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CHAPTER I. INTRODUCTION

1.0 Background

The basic operation of a radar is the transmission and reception

of electrical energy. The received signal or radar return is composed

of target, noise, jammer and/or clutter energy. For a ground-based air

defense radar, the target is an aircraft, missile, etc.; clutter is

ground, trees, rain or chaff; and jammers are electrical energy trans-

mission devices. Whereas proper radar design will reduce the effects

of clutter and jammers while enhancing the target, a signal processor

is normally required to provide target enhancement while rejectinq

interference. Additional interference, i.e., thermal noise from system

electronic components, increases the total interference power which the

processor must reduce.

A typical quadrature channel radar digital signal processor is

shown in Figure 1. The mixers and the lowpass filters are used to

translate the intermediate frequency bandpass radar signal to in-phase

and quadrature channel baseband signals. After the signals are digi-

tized by the analog-to-digital converters, the clutter power is reduced

by clutter rejection filters, commonly referred to as moving target

indicators (MTI). Once the clutter power is reduced below the thermal

ncise level, the signal-to-noise (and/or jammer) ratio is improved by

some type of coherent integrator, for instance, a fast Fourier

transformer. With the clutter rejected and the signal-to-noise ratio

increased, the amplitude of each range/doppler cell is extracted.

These detected outputs are sent to a decision element.

1
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The function of the decision element is to produce an output or

target report only if a target is present, i.e., a detection. If no

target is present and an output is reported, this is a false alarm

which the decision element should minimize. Typically, the probability

of detection should be greater than 50 percent while the false alarm

rate, or probability of false alarm, would be between l0 3 and l0-9 .

Basically, the decision element compares a threshold (which is a

function of the system probability of false alarm requirement) to the

detector outputs. A target report is issued if the threshold is

exceeded.

If a fixed threshold decision element is used, the false alarm

rate is extremely sensitive to small changes in the average value of

the energy from all sources of interference. This sensitivity is

easily seen in Figure 2. If the threshold is set for a probability of

false alarm of 10-8, an increase of only 3 dB in total interference

power density corresponds to a l04 increase in the probability of false

alarm. This increase would put an unreasonable demand on the radar

data processor. Therefore, an adaptive threshold decision element is

required to provide acceptable target detectability while maintaining

a constant false alarm rate (CFAR).

The processing principles used to counteract the variations in the

output interference level are referred to as constant false alarm rate

(CFAR) or adaptive detection processing techniques. The most common

approach to the design of such CFAR processors is to sample the back-

ground interference in the time-and/or-frequency domain around the

current range and doppler cell, then utilize the samples to estimate

akx1'
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the unknown statistical parameters of the interference. This estimate

is used to maintain a CFAR by control of the threshold level.

10-1

10-2 -

S10- 3 - FIXED SAMPLE SIZE
1TEST (SINGLE PULSE

DETECTION)
10-4 .w

0"

IL

10-7
~10-8

0 1 2 3 4 6 6 7 8 9 10 11 12
I*- 3dB -- 0

INCREASE IN NOISE POWER DENSITY IN dO FROM DESIGN VALUE

Figure 2. False Alarm Probability for

Fixed Threshold Detection

1.1 Purpose

The purpose of this study is to compare the performance of two

commonly known CFAR techniques, the cell averaging and the "greatest-

of." The performance comparison will be based on detection probabili-

ties and false alarm probabilities obtained from a Monte Carlo simula-

tion of the two techniques. The performance of the processors will be

determined for different target models, clutter environments, detector

laws, wordlengths, and interfering target power levels. The simulation

will be utilized for verification of theoretical performance results

.,_k
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and determination of performance results not obtainable by present

analytical methods.

1.2 Content

Chapter II reviews the theoretical analysis of a fixed threshold

processor. Probability density functions at the detector output are

derived for noise only and target plus noise for both a linear and a

square law detector. Two target models are used, a steady or nonfluc-

tuating target and a Swerling I target. The probability of false alarm

for each detector is determined by using the noise only probability

density functions. The probability of detection is determined for each

detector and a steady target, and for the square law detecto" and a

Swerling I target.

Chapter III contains a theoretical analysis of three commonly

known adaptive threshold or CFAR techniques. The CFAR techniques are

cell averaging, "greatest-of," and log. Each technique is described

and various performance equations are derived or given. Probability

of false alarm and probability of detection equations are derived for

the cell averaging and "greatest-of" CFAR methods.

Chapter IV describes the Monte Carlo simulation developed for a

performance comparison of the cell averaging and the "greatest-of" CFAR

techniques. Mathematical models of the targets, noise and clutter are

given. Implementation of the two CFAR techniques is presented.

Finally, the determination of the probabilities of false alarm and

probabilities of detection for both CFAR processors is discussed.

Chapter V presents a performance comparison of the two CFAR

processors based on the false alarm and detection probabilities obtained

from the Monte Carlo simulation. The comparisons include different
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detector laws, clutter environments, quantization wordlengths, and

interfering target power levels.

Chapter VI contains the summary, conclusions, and recommendations

for future work.

*1
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CHAPTER II. FIXED THRESHOLD PERFORMANCE ANALYSIS

2.0 Introduction

The radar statistical detection problem in noise is one of choosing

between signal and noise at the radar processor output or noise alone;

that is, when the processor output voltage is described by v(t), one

wants to test per range cell between Ho (noise alone) or H1 (signal

plus noise) as follows:

H : v(t) = n(t)0 :

H1: v(t) = s(t) + n(t) (2.1)

The fixed threshold analysis assumes that the decision element is

preceded by a prewhitening or clutter rejection filter, such as an MTI.

The decision element in Figure 1 tests the processed video to

determine whether a signal is present (Hl ) or not present (Ho). For a

specified voltage level or threshold, the decision element reports a

target if the amplitude of the video is greater than the threshold, and

reports no target if the video amplitude is less than the threshold.

It is possible that processed video which contains only noise can

exceed the threshold generating a false target report or false alarm.

By increasing the threshold the number of false alarms diminishes.

However, the chances of detecting a target also decrease. Consequently

the threshold setting is made as low as possible, consistent with a

tolerable false alarm rate with which the system can operate.

In a given system the fixed threshold would be determined by

establishing a tolerable false alarm rate based on overall system

- 7
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considerations. Having determined the threshold setting, the proba-

bility of detecting a desired target can be calculated.

This chapter will discuss the probability density functions (pdf)

at the output of the detector for both a square law and a linear

detector with noise only and signal plus noise inputs. The signal or

target models used were a nonfluctuating or steady target [1] and a

Swerling I target [2]. Expressions are given for the probability

of false alarm and the probability of detection associated with the

pdf.

2.1 Noise Only

This section gives the pdf and probability of false alarm

expressions for the single pulse amplitude detected noise only cases.

The detectors considered are the linear and square law detectors.

2.1.1 Linear Detector

A linear detector extracts the envelope of the video and is given

as

z /xT+ x n(2.2)

where xI is the in-phase video, xQ is the quadrature video, and z is

the detector output.

If x and x are independent zero mean Gaussian random variables

2
and homogeneous, i.e., they have the same variance, a the pdf of

01Iz is

p(z) = -- exp[-z /22 2 (2.3)

This pdf is the well known Rayleigh distribution..1

'1
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Assuming a fixed threshold, Zth, the probability of false alarm is

PFA f p(z)dz = exp[-z 2/2o2]dz

Zth Zth

by a change of variables

w = z 2  dw =2zdz

Wth =Z h

then

PFA f c 2 exp[-w/2c2]dw exp Zth/12a . (2.4)

2th 2

This equation can be used to determine a threshold given a desired

probability of false alarm, i.e.,

Zth = [-ln(PFA)2a 2] (2.5)

2.1.2 Square Law Detector

*' A square law detector produces an output which is proportional to

the square of the video envelope and is given by

21  2
y = xi + xQ (2.6)

where xI is the in-phase video, XQ is the quadrature video, and y is

the detector output.

If xI and XQ are independent zero mean Gaussian random variables

and homogeneous, i.e., they have the same variance, a the pdf of

y is

p(y) - exp[-y/2a 22 (2.7)F 2a

The pdf is the well known exponential distribution.
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Assuming a fixed threshold, Yth' the probability of false alarm is

PFA f p(y)dy = exp[IYth/2a2 ]. (2.8)
Yth

I

This equation can be used to determine a threshold given a desired

probability of false alarm, i.e.,

2
Yth = [-l.n(PFA)22 "y (2.9)

2.2 Target Plus Noise

This section gives the pdf and probability of detection expressions

for the single pulse amplitude detected target plus noise cases. The

target will be either a nonfluctuating or steady target or a Swerling I

target.

At this point, it is desirable to discuss the definition of inter-

mediate frequency (IF) signal-to-noise ratio, x, commonly found in radar

literature. The basic writings of Marcum [1], Swerling [2], and Rice [3]

used the following:

x = Average Signal Power at IF - P2Average Noise Power at IF - (2.10)

where the received target is Pcos(21ft + 0) whose IF average power is

2/2

For simplicity, it can be assumed that any quadrature channel

processing, such as a clutter rejection filter, will not affect the

signal-to-noise ratio. Hence the IF signal-to-noise ratio and the

detector input signal-to-noise ratio are the same.

2.2.1 Steady Target

A steady target [1] is defined as a target where the signal-to-

noise ratio for one pulse describes the signal-to-noise ratio of any

pulse of a train under consideration. Hence, the pdf is
WI

-
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p(x) P2/2a2  (2.11)

where P is the IF signai peak.

2.2.1.1 Linear Detector

The pdf of a single steady target plus noise variate, z, after

linear detection is derived in Appendix A:

P~)=Zexp z 2
2 10().(2.12)

2.

where P is the peak signal voltage prior to detection, a is again the

same variance, and 10 is the modified Bessel function of the first kind

of zero order [4].

The probability of detection is given by

PD = p(z)dz = f 2 exp + 2  ( dz . (2.13)Z th Z th a

This equation is of the form of a Q-function [4]

Q(b,c) = a exp 2 1 b (ab)da (2.14)

and thus Equation (2.13) can be written as

PD = Q(b,c) , (2.15)

where b = P/a and c = Z th/a.

2.2.1.2 Square Law Detector

The pdf of a single steady target plus noise variate, y, of a

square law amplitude detector is

P(Y) 1 exp 10 OY (2.16)
2 a 2c ]

which is obtained from Equation (2.12) by a change of variables.

ILI

1



12 i

The probability of detection for the square law detector is the

same as for the linear detector given in Equation (2.15), i.e.,

PD = Q(b,c) , (2.17)

where b = P/a and c ='th/a-

2.2.2 Swerling I Target

A Swerling I target [2] is defined as samples which are correlated

within a pulse group but are independent on a scan-to-scan basis

(slowly fading). This case is applicable to many radar targets since

they tend not to be independent from pulse to pulse, but independent

from scan to scan due to target position change.

The pdf for a single sample signal-to-noise ratio, x, is

w(x,-x) = Lexp[ (2.18)
X

where p 2 /2a2 is the average signal-to-noise ratio.

2.2.2.1 Linear Detector

The mathematical analysis of a Swerling I target plus noise and

a linear detector is difficult and no analysis was found in the

literature.

.2.2.2 Square Law Detector

The pdf for a single Swerling I target plus noise square law

detector output variate, y, is derived in Appendix A and is given as

p(y) +) exp 2aY u(y) (2.19)

The probability of detection is given by

A1.
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PD = p(y)dy = 1 exp- idy
Yth Yth 2a (I+x) L 2 2 (I+x)J

= exp.Yth12a2 (1+x)] (2.20)

Substituting Equation (2.8) yields

PD = PFA 1 + (2.21)

2.3 Conclusions

A fixed threshold decision element is normally used to specify

radar system performance. Due to the complex equations obtained when

a linear detector and/or a steady target is used, the performance will

normally be based on a Swerling I target model and a square law

detector. This assumption does not cause any significant problems.

The Swerling I target model is a realistic model for many radar targets

and the square law and linear detector have, as shown by Marcum [l],

essentially the same detection performance for a single pulse.

In an actual radar system, the use of a fixed threshold would

2require having a priori knowledge of the thermal noise variance, a

to maintain a desired probability of false alarm. For example, if

PFA = 10-6 , then from Equation (2.8)

Yth = -ln(PFA)2a2 = 27.63a 2  (2.22)

2
Hence Yth is a function of the input noise variance, a2 . As shown in

Chapter I, the probability of false alarm is strongly affected by a

2
change in a

J1
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Even if exact knowledge of the thermal noise were available, the

total system interference variance can change due to residual clutter

not cancelled by the prewhitening filter or jammers. Therefore, an

adaptive technique for determining the threshold is required. These

techniques are referred to as constant false alarm rate (CFAR)

processors or adaptive detection processors.



CHAPTER III. ADAPTIVE THRESHOLD ANALYSIS

3.0 Introduction

This chapter reviews the theoretical analysis of three commonly

found CFAR processors: cell averaging, "greatest-of," and log.

Basically, these processors sample the background interference in the

time domain around a cell, i.e., a range cell of interest, and then

utilize the samples to estimate the unknown statistical parameters of

the interference. This estimate is used to determine a threshold for

the cell of interest.

The estimated threshold's probability density functions are given,

and equations for the probability of false alarm and probability of

detection are derived for the cell averaging and "greatest-of" CFAR

techniques. The analysis assumes a square law detector and a Swerling

I target for reasons stated in Chapter II.

Only a limited analysis of the log CFAR is presented due to a lack

of available analytical results. An equivalence to the cell averaging

technique is discussed.

As in the fixed threshold analysis, the CFAR processor analysis

will be based on white Gaussian noise interference which is a result

of the prewhitening or clutter rejection filter.

3.1 Cell Averaging CFAR Analysis

This procedure (Figure 3) forms the threshold Yth by scaling the

average value of N square law detected reference cell outputs of the

quadrature channels, I and Q. i.e.,

15
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L (

th N K nY I )n N (x )
n=1 n~l n=l

(3.1)

where the last summation results since it is equivalent to summing 2N

statistically independent, squared, zero mean Gaussian random variables

XlQ. It is assumed that the referenced cells are homogeneous, i.e.,2

each (xlQ)n has the same variance, a Consequently the distribution

for NYth/KC2 will have a chi-square pdf with 2N degrees of freedom.

The pdf for Yth is obtained by changing variables on the chi-square

pdf [5]. Thus

M N)N 1 (Yth exp [YthN/(2a2K)]u(Yth)

Yth) =NNa (N-I)!
(3.2)

Vo 'OTH

SQUARE-LAW TECTOR TAPPED DELAY LINE

V't' 

YTH

V-N121 , -1V 'FYI YN/21

Figure 3. Block Diagram of a Conventional
Cell Averaging CFAR Processor

This equation can be used with the fixed threshold PFA of Equation

(2.8) to obtain the expected PFA when the cell averaging CFAR controls

the threshold, i.e.,

aALM
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PFACA =EIPFA) f exp[-yth /2a 2jlp Ythd"th

-- ' expE-Yth2a2]1( ") NexpF NYh/2Ka dYh

Letting a Yth/( 2o2) gives

(NPcA (N 1 f aNl exp[-a(N/K+l)]da . (3.3)

Letting a = b/(N/K+I) yields

P-N (~N)N b b- exp[-b] db

N -

= G N fl bN-1 exp[-b]db

K0

PFCA K)i

This allows the CFAR threshold constant, K, to be determined from

the desired average probability of false alarm, PFACA' i.e.,

K = N [(F) C 
-N 1]

K:LPFAcAI (3.4)

It is easily seen that the average probability of false alarm is

not dependent on the noise variance. Hence, the Gaussian noise level

does not have to be known to maintain CFAR. Nitzberg [6] called this
I.

an unknown level CFAR, but it is commonly known as a range cell

averaging CFAR.

The expected value of the probability of detection PDCA for the

Swerling I target can be determined by the same procedure, i.e.,

06

Fi



DCA =E(PDj f c PD p(Y t)dYth

=1 exp [Yh2o(l,x) p(Yth)d~t (3.5)

TCA =(1 + (lK -N

Substituting Equation (3.3) yieldes

[ - + x 1/N ]N
where x is the average IF signal-to-noise ratio.

This result can be used to plot PD1CA versus x with PFA CA and N as

parameters. A typical curve is shown in Figure 4.

* Figure 4. Performance Curves of
Swerling I Target withCFAR Window
Width as a Parameter (PFACA= 106)

90-
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Since the fixed threshold performance curves are extensively

tabulated [7], a general cell averaging CFAR signal-to-noise loss curve

is desirable. The loss is given by the equation from Moore [8],-R/N I
I + XCA

og oR/N

L = -10 log CA + 10  (3.6)

where R corresponds to the exponential in the PFACA' i.e., PFACA -

N is the number of reference cells, and xCA is cell averaging signal-to-

noise ratio necessary to give the same PD at x for a fixed threshold

detector. This loss is shown in Figure 5.

7I

SNR (dB)

12

5 6
3
0

4-

U3-U

2- PFA -10-R

WINDOW SIZE (NI

*11

0 0.2 0.4 0.6 0.8 1.0

CFAR PARAMETER (R/N)

Figure 5. Cell Averaging CFAR Loss
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3.2 "Greatest-Of" CFAR Analysis

In this method (Figure 6), the reference cells are divided into

two subsets of size N/2. The cell averaging method is used to deter-

mine a threshold for each of the reference cell subsets. One subset

is located before the reference cell of interest and the other after

the reference cell of interest. The "greatest-of" CFAR threshold is

obtained by selecting the largest value from the two subset

thresholds, i.e.,

KG N/2

nml

KG -N/2

Y2N/2 En 1 Yn

YG MAX [YI, Y2] (3.7)

The G subscripts for "greatest-of" are used so that there is a

distinction from the cell averaging processor.

Y-N/2 Y- Y, Y/

!I ,

Figure 6. Block Diagram of a "Greatest-of" CFAR Processor
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Since YI and Y2 are determined by the cell averaging method, then

NY1/( 2KG a) and NY2/( 2KGa 2) are chi-square distributions with N degrees

of freedom. Consequently, the pdf for Y1 (or Y2 ) can be obtained from

Equation (3.2).

By replacing Y with Y1 (or Y2) and N with N/2, i.e., for Y

[N/2 ~/ -lI (Y)

p(YI) = /(N/ )! (y2-NI? exp N Y] u(Y1).
(3.8)

Papoulis [9] gives an expression for finding a pdf of the maximum of

two random variables, cf., Equation (7-15), p. 193,

PG (Y G= 2F(Y)p(Y)Iy=yG

= 2Fy(YG)Py(YG) (3.9)

where the cumulative distribution function for Y1 and Y2 is represented

by F(.).

The average probability of false alarm for the "greatest-of" CFAR

is derived in Appendix A and is given by

2 PFA N/2-1 (n + -- 1)!
PFAG = N/2

N - 1) ! ( + P'F-Ap-2/N) n=O n!(l ,--+A2/N

(3.10)

where PFA is called the prototype sectiun PFA and is equal to

*ImII~FA = (I + GJ! (.1
4N

Note that this is an expression for a cell averaging CFAR which uses

N/2 reference cells.

:I
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It is possible to solve for KG in terms of PFAp as in Equation

(3.4) with N replaced by N/2, but KG is not easily related to PFAG.

However, the results of Equation (3.10) can be plotted as shown in

Figure 7, then used to obtain the threshold constant. For example, if

it is desired to establish PFAG  = 10-6 with N = 32, then from Figure 7,

PFAp = 1.75 x 10- . Consequently, KG is calculated to be 15.73 and

would be used in the Y and Y2 determinations in order to establish

PFAG  10-6

104

U.

. WINDOW SIZE
9) (N/2)
I-

v,,< 10 5 -
'U
I- o

(9 16

8

10-6
4!

10-6 1045  104  10-3  10' 2

PROTOTYPE PFAp

Figure 7. GO CFAR False Alarm Characteristics

Similar results derived in Appendix A hold for the probability of

detection

.1A
AI
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P-DG f PD PG(YG)dYG

2 PDp N/2-1 (n + -- ),

-) ! (I+ PpI/N) n1=0 n!(l + P-p-2/N
2 (3.12)

where the prototype section PDp is

2 K -N/2= + PFAp-2/N -N/2

DP\ + + x)/ . + ) . (3.13)

This represents the performance of a cell averaging CFAR with N/2
reference cells. Once PFAp has been found (as from Figure 7), then P7p

can be calculated from Equation (3.13) and PDG from Equation (3.12).

It would be highly desirable to determine the signal-to-noise ratio

loss for the "greatest-of" CFAR as compared to the ideal fixed threshold.

Unfortunately, the complexity of Equation (3.12) prevents such an

analysis.

Analysis of the "greatest-of" CFAR has been performed [8, 10, 11,

13]. One advantage of the "greatest-of" CFAR is discussed in References

8, 10, and 11, that is, the improved regulation of false alarms obtained

for range extended clutter when compared to a cell averaging CFAR.

Range extended clutter, discussed further in Chapters IV and V, is the

weather or chaff clutter not rejected by the clutter filter and occupy-

ing some of the CFAR reference cells.

3.3 Log CFAR Analysis

This system (Figure 8) forms an estimate for the threshold as

N N ~ N 1 /N
VT : K yI yjl/N=K I y (3.14)

jT =

Ii

A.
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An equivalent method, Figure 9, for processing is to use a log

detector at the input such that
N

log VT 1 L I log yj + log K (3.15)
T N

is formed and log y0 is compared to this threshold.

The expected value of the estimate is determined to be

EIV T) K(E[y /N])N = 2K, [P(I + )]N (3.16)

The gamma function will become approximately equal to 1 for large

N since r(l)=l. Thus the expected value of the threshold will become

LIM EIVT= LIM 2Ka 2 [F(Ij + 1)1 2 2 (3.17)

which is equal to 2Kcr for homogeneous noise. Therefore a reasonable

estimate can be formed by using the log CFAR algorithm.

Whereas a detailed mathematical analysis has not been performed,

Hansen and Ward [12] have performed a Monte Carlo analysis of the log

CFAR. Nitzberg [6], concerning a similar algorithm called the

geometric-mean CFAR, has determined the probability of detection when

an assumption is made about the noise distribution in the auxiliary

cells, viz., the geometric-mean assumption.

In comparing the log CFAR and the cell averaging CFAR, Hansen and

Ward [12] have proposed an empirically determined formula for the

relationship between the number of reference samples required by the

two detectors in order for their CFAR losses to be identical:

Nlog = 1.65 NCA - 0.65 . (3.18)

The main advantage of the log CFAR is the increased dynamic range

available due to the log detector.
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VT

1DrECr3 J TAPPED DELAY LINE

VT

V-N/1 I*. V1  N/2

Nvy

Figure 8. Block Diagram of Cell Averaging

Log/CFAR Processor

LOGy0  LOGTI-

y~t) LOG

DETECOR TAPPED DELAY LINE

0000 0000 LOG VT

Y*/ I- 1 FY Y /
*'1j

I Figure 9. Equivalent Block Diagram of Cell Averaging
Log/CFAR Processor
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3.4 Summary,

The cell averaging CFAR has been utilized extensively in radar

signal processors due to its capability in homogeneous noise and its

well understood and analyzed performance.

The log CFAR is simply a cell averaging CFAR following a log

detector which provides performance equivalent to the cell averaging

CFAR if the number of cells is sufficient. The log CFAR has been used

extensively due to its dynamic range capability.

The "greatest-of" CFAR has not been used extensively, due partly

to the original belief that it had approximately a 1 dB loss over the

cell averaging CFAR, e.g., Hansen [10]. Recent work by Moore [8],

Moore and Lawrence [11] and Hansen and Sawyer [13] has shown only a

0.2 dB difference in the two processors. Hence, the "greatest-of"

CFAR, whose main advantage is the improved false alarm regulation in

extended clutter [8, 11] should have increased utilization in radar

processors.

Ii

n



CHAPTER IV. DESCRIPTION OF SIMULATION

4.0 Introduction

The cell averaging CFAR and the "greatest-of" CFAR are two commonly

used techniques. Analysis of the cell averaging CFAR has been exten-

sively performed [10, 14-16], but only limited analysis of the "greatest-

of" CFAR has been performed [8, 11, 13].

The main thrust of this study is to determine the performance of

the two CFAR processors by development of a simulation and utilization

of Monte Carlo techniques. The performance ruts--obtained are used to

compare the two techniques. This chapter gives a description of the

simulation.

4.1 Simulation Description

A block diagram of the simulation is shown in Figure 10.

INPUT DETECTOR CFAR PD

" +02VCELL PFA

* CLUTTER AVERAGING
" TARGETS V S v 2 jr 2 GRAET

OF

Figure fD. Block Diagram of CFAR Simulation

, First, synthetic video composed of a combination of target, noise

4 i and clutter is generated for a quadrature channel proces-or. The

amplitude is extracted by an exact square law or linear detector. 
The

detected output is compared against a threshold determined by either 
a

* "cell averaging CFAR or a "greatest-of" CFAR using other detected

outputs.
""4
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If the detector output exceeds the threshold, a target detection

is reported. If the output is interference only, this is a false

alarm; if the output contains signal, this is a detection. A detection

and false alarm count are maintained for both processors. Finally,

after a number of Monte Carlo trials the detection and false alarm

counts are used to calculate a probability of detection and a proba-

bility of false alarm for each processor.

4.2 Synthetic Video

This section discusses the target models, noise, and clutter used

in the simulation.

4.2.1 Target Models

Two target models were used in the simulation: a steddy or non-

fluctuating target [1] and a Swerling I target [2].

The steady target is defined as a target where the signal-to-noise

ratio for one pulse describes the signal-to-noise ratio of any pulse of

a train under consideration. A steady target is modeled in the I and

Q channels by

SI = Pcos(e)

SQ = Psin(O) (4.1)

where P is the IF peak signal voltage and 0 is a uniformly distributed

random phase angle.

A Swerling I target is defined as samples which are correlated

within a pulse train but are independent on a scan-to-scan basis

(slowly fading). This case is applicable to many radar targets, since

they tend not to be independent from pulse to pulse, but due to target

position change, independent from scan to scan. The probability

density function for one sample, x, is

= I
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-22where x = p/2a is the average signal-to-noise ratio. Since the power

distribution of a Swerling I target is the well known exponential, then

the amplitude distribution is Rayleigh and the Swerling I target models

in the I and Q channels are given by

S1  = P Yn2 uI  cos(21u2)

SQ =  
1 nu1 sin(2-u2 ) (4.3)

where uI and u2 are independent uniformly distributed variates from

0 to 1.

4.2.2 Noise Model

The system noise will be zero mean Gaussian noise whose pdf is

given by

p(v) - 1 exp[-v2/2a] (4.4)

where a2 is the variance.

There is a procedure for generating uncorrelated Gaussian samples

called the direct method [17]. In this procedure, pairs of independent

samples (ul , u2 ) are drawn from a uniform distribution (0 to 1), then

transformed as

VI = I-21nui cos(27u 2)

v2 = V:21 nu2 sin(2ru2) (4.5)

where vl , v2 are the uncorrelated samples of the Gaussian distribution.

From Equation (4.5), u1 and u2 may be expressed as functions of v

and v2

-"-
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u = exp 2

= arc tan . (4.6)

The independence of v, and v2 can be shown as follows:

P1 (V1 ' v2 ) = P2 (u,' u2)IJ (4.7)

where fJi = absolute value of the Jacobian of the transformation, but,

since P2 (ulI u2) = p (ul) P(u 2 ) = 1,

P1  (Vl' v2 ) = IJI  (4.8)

where

du1  du1
= d(u ,u2 ) dv1  dv2

d(Vl,v 2) du2  du2

dv dv

and

P1 (vl ,v2 ) - x1 exp[ 1 2( 2 -x 2 exp[ 1 2 2)] (4.10)

1 1 1 1

The above expression reduces to

Pl(vlv2) T 22exp[" v, + V ( /hexp -  ] _expF ])
(4.11)

Pl(v 1 ,v 2 ) = IJI = pl(vl)Pl(v 2 ) (4.12)

Hence, v and v are independent Gaussian variables.
A2
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The variance of v1 and v2 is

V2 = 2  (4.13)

Hence, the Gaussian noise is modeled in the I and Q channels as

N1 = av1

NQ = av2  (4.14)

where v1 and v2 are defined in Equation (4.5) and a is the standard

deviation in each channel and at IF.

4.2.3 Clutter Models

Two clutter models were included in the simulation: nonhomogeneous

interference and Weibull [18] distributed clutter.

The nonhomogeneous interference is clutter where the power density

varies as a function of range, i.e., chaff or weather clutter which is

distributed in range. The clutter power appears as a step function

with a clutter edge [14] as shown in Figure 11.

I-
C.) I___

CELL UNDER N RANGE
TEST

Figure 11. Clutter Edge Model

The clutter is assumed to be Gaussian in each range cell and the

.2 clutter powers in the N CFAR reference cells are related by a ratio

such that

Tn n=l, 2, ... N (4.15)

WatL
' 02
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where 2 is the clutter power in the cell of interest and an is the

clutter power in the nth reference cell.

In Reference 18, Boothe has shown that the spatial distribution of

the ground clutter backscatter coefficient, a° , for various types of

terrain fit quite well with a Weibull pdf. The Weibull pdf is given by

P (°)= b(a°) exp- (a) (4.16)
a L- a

where b = I/A (A = Weibull slope parameter) and

(a 0 ) b
a = n2 (4.17)

where m = median value of Weibull pdf. Typical values of the clutter

mmslope parameter (A) and median backscatter coefficient (oo) are given

in Reference 18.

0
A single Weibull sample, a ,can be generated by

I nm A [-In(u)]A (4.18)

(1n2)

where u is a uniformly distributed random variate. Due to the quadra-

ture channel processing, two independent Weibull samples, a and aQ,

must be generated.

Hence, the Weibull pdf is given in the I and Q channels as

00 °m ]A
CYI = n2) [-]n(ul)] cos(27u 2 )

Q A [-In(ul)0 sin(27u2 ) (4.19)

where u, and u2 are independent samples drawn from a uniform distribu-

., . tion (0,I).



4.3 Detector Laws

The square law detector oucput is given by

Y = 1 2 + (4.20)

where I and Q are the video in the in-phase and quadrature channels,

i.e., signal plus interference, respectively.

The linear detector output is given by

z= V1 2 +Q2 (4.21)

where I and Q are as above.

4.4 CFAR Processors

Two constant false alarm rate processors are modeled in the

simulation.

4.4.1 Cell Averaging CFAR

The cell averaging 'FAR will form a threshold Yth by scaling the

average value of N detected reference cell outputs of the quadrature

channels, i.e.,

Nth = Yn (4.22)
n=l

where the yn 's are the detector outputs, n is the reference cell index

and K Is the scaling constant. The actual model is implemented as

shown in Figure 3, that is,
' KN/2 N/2 Y]

Yth = -n4 Yn +n~ YnE (4.23)

where y 0  the cell of interest, is not included in the thresholdI determination.



34

4.4.2 "Greatest-Of" CFAR

The "greatest-of" CFAR will form a threshold YG by using the cell

averaging CFAR processor on two sets of N/2 detected reference cell

outputs and will select the largest value obtained. The "greatest-of"

processor is simulated as

KG -N/2
1 -2 nE YnYlN/2 _= -n

KG N/2 (4.24)

N/2 n=l

and

YG = MAX [YI , Y2]

where KG is the "greatest-of" scaling constant. Again y0 the cell of

interest, is not included in the threshold determination.

4.5 PFA and PD Determinations

The probabilities of false alarm are determined from detector

outputs which contain noise and/or interference only. A threshold for

the cell of interest is calculated by ne cell averaging CFAR processor

using other detector outputs. The magnitude of the cell of interest

is compared to the threshold and, if it is larger, a false alarm is

reported. In the simulation, a false alarm counter (FAC) is initial-

ized to zero at the beginning of a Monte Carlo sequence, then FAC is

incremented by one for each false alarm reported. Finally, the

average probability of false alarm is determined as

-CA NMON (4.25)

where NMON is the number of Monte Carlo trials. The average probability

of false alarm, PFAG' for the "greatest-of" CFAR is determined by the

same procedure.
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The probabilities of detection are determined from detector outputs

which contain targets. The same procedure is used as in the PFA deter-

mination; however, a target detection counter (TDC) is incremented for

each threshold that is exceeded by the magnitude of the cell of interest

in which a target resides. Then the average probability of detection

is determined as

- TDC (4.26)
CA NMON

The average probability of detection, PDG' for the "greatest-of"

is determined in a similar manner.

4.6 Summary

A simulation has been developed which can be used to determine

the cell averaging CFAR and "greatest-of" CFAR performance for different

environmental conditions, targets and detectors. The probability of

false alarm and the probability of detection results obtained can be

used to verify the theoretical performance equations and to compare the

relative performance of the two processors.



CHAPTER V. RESULTS

5.0 Introduction

The simulation described in Chapter IV was developed to compare

the performance of the cell averaging and "greatest-of" CFAR processors.

The utilization of a simulation allows determination of the processors'

performance for the different targets, detectors and clutter environ-

ments simulated. The probabilities of false alarm and probabilities of

detection are the basis for comparing the two CFAR processors. The

desired probability of false alarm in radars is normally quite small,

i.e., 10-3 to 10-9 . Thus, it is difficult to verify the probability

of false alarm using a computer simulation due to the amount of

computer time required to complete a sufficient number of Monte Carlo

passes, i.e., 105 or more. This difficulty was overcome by programming

the simulation on an array processor. The array processor is a high

speed arithmetic unit designed for scientific applications. A brief

discussion of the array processor is given in Appendix D.

5.1 Probability of False Alarm Results

To compare the two CFAR techniques it is necessary to design them

to maintain the same average probability of false alarm in homogeneous

noise, i.e., -F-AG = PFACA'

For the cell averaging CFAR it is only required to specify the

desired average probability of false alarm, PFACA, and the number of

reference cells N, and by using Equation (3.4) to determine the

A threshold constant K.

36
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For the "greatest-of" CFAR the design procedure is somewhat

complicated. The threshold constant KG is determined by a computer

program which iterates PFAp in Equation (3.10) until the desired value

for the PFAG is obtained. Then this value of PFAp and the number of

reference cells N is used in Equation (3.11) to determine KG.

Hence, theoretically PFACA = PFAG for the same number of reference

cells in homogeneous noise.

The design probabilities of false alarm of 10- , 10- , and l0

were chosen because they are commonly found values and because the

Gaussian random number generator lacks distribution tails necessary for

a false alarm rate <10 -5 . The CFAR window widths N were chosen to be

8, 16, and 32, since digital hardware is normally implemented in powers

of two. The probabilities of false alarm for the cell averaging and

"greatest-of" CFAR obtained by the Monte Carlo simulation are given in

Table 1.

Table 1. CFAR Processor Probabilities of False Alarm

PFA N PFcA PFAp PFA G

8 0.113-2 0.877-2 0.106-2
10-  16 0.110-2 0.507-2 0.107-2

32 0.104-2 0.318-2 0.103-2

8 0.121-3 0.223-2 0.123-3
l0-4  16 0.104-3 0.104-2 0.110-3

32 0.110-3 0.532-3 0.124-3

8 0.106-4 0.599-3 0.770-5
l0 16 0.134-4 0.230-3 0.144-4

32 0.115-4 0.940-4 0.115-4

The number of Monte Carlo runs used to determine the results in

Table 1 were l0, 1O6, and 10 for the probabilities of false alarm

.-.

, : w . . I . .. . .... ... '-""T .. . . .. .
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10- , 10- , and 10- , respectively. The number of Monte Carlo runs

required to give a priori probabilities PFA and PD for a specified

range of the estimated parameters is calculated in Appendix C.

5.2 Probability of Detection Results

The performance curves in Figures 12 through 23 were determined by

the Monte Carlo simulation. The curves are plotted as probability of

detection versus input signal-to-noise ratio. The cell averaging CFAR

performance curves are given in Figures 12 through 14 for a steady

target and in Figures 15 through 17 for a Swerling I target. A square

law detector is used. The "greatest-of" CFAR performance curves are

given in Figures 18 through 20 for a steady target and in Figures 21

through 23 for a Swerling I target. Again, a square law detector is

used.

The design false alarm probabilities of 10- , 10
- , and 10- are

shown on the plots while the actual average false alarm probabilities

are given in Table 1.

The theoretical probability of detection equations have been

determined for the cell averaging CFAR with a steady target and a

Swerling I target and for the "greatest-of" CFAR with a Swerling I

target only. These equations are shown below.

The theoretical PD for a square law detected steady target and

cell averaging CFAR is derived in Reference 14 and is given as

2 N-I 2 2 m

2 : 1 exp[-a/(g 2)] 2) Lm(e), (5.1)
g + m=o g

where g = K 12_N is the input signal-to-noise ratio, e = 2g2/[2(g 2
+ 2)]

and L m(e) are Laguerre polynomials with the properties

2
Lo0(e ) = 1, L1(e) = 1+e, Lm+l(e) = (e+2m+l)Lm(e)-m Lml(e).

(5.2)
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The theoretical PD for a square law detected Swerling I target

using cell averaging CFAR is given in Equation (3.5) and repeated here.

PDCA 1 -+ K (5.3)N (I + X)

where N is number of reference cells, x is the input signal-to-noise-

rat4o, and K is the threshold constant.

The theoretical PD for a square law detected Swerling I target and

"greatest-of" CFAR is given in Equation (3.12) and repeated here.

2Dp N/2 -1 (n + N 1)!

G1 ! + -p- /) n: 0 n! ( + P-p2/N)n

(5.4)

where the prototype P is

F 2K 1 -N/2PDP 1 + G(5.5)
N (I + x)_

where N is the number of reference cells and KG is the "greatest-of"

threshold constant.

The probability of detection curves for an ideal threshold, i.e.,

a fixed threshold system where the noise power is known, are given in

Meyer and Mayer [7]. Ideal threshold curves are plotted in Figures 12,

15, 18, and 21. The curveson Figures 12 and 18 were extracted from

page 126 of Reference 7, while the curves on Figures 15 and 21 were

extracted from page 218 of Reference 7. For the Swerling I target

results the curve could be generated using Equation (2.20).

5.3 Probability of Detection Comparison

The performance curves, Figures 24 through 29, provide a compari-

son of the cell averaging and "greatest-of" CFAR probabilities of

detection. They are replots of Figures 17 through 28 where the cell

Vol - -

;L7--.----~ *.
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averaging and "greatest-of" CFAR probabilities of detection curves are

combined for a particular design probability of false alarm and target

model. The actual probabilities of false alarm are given in Table 1.

It can be seen that the cell averaging CFAR has better detection

performance in homogeneous noise than the "greatest-of" CFAR. For the

target model of greater interest, i.e., the Swerling I target, the

detection performance of the two processors is almost equivalent.

Since the Monte Carlo simulation determines probabilities of detec-

tion, a more meaningful comparison could be made using signal-to-noise

ratios. Using Equation (3.5), the input signal-to-noise ratio for the

cell averaging CFAR and a Swerling I target is

XCA - PcA FA CA -1/N{ xCCAN -(5.6)

, h-D-CA -1

where N is the number of reference cells, PFcA is the average proba-

bility of false alarm, and P'cA is the average probability of detection.

Hence, given an average probability of detection, average probability

of false alarm, and CFAR window width, the input signal-to-noise ratio

for the cell averaging CFAR can be determined.

To compare the two CFAR techniques, an average signal-to-noise

difference AdB was calculated as follows. For a particular PFAD , i.e.,

10-3 , 10-4 , or 10-5 , CFAR window width N, i.e., 8, 16, or 32, and

the Monte Carlo determined PD's, i.e., PCA or PDG , the corresponding

cell averaging CFAR input signal-to-noise ratio for both CFAR tech-

niques was determined using Equation (5.6). That is, the input

signal-to-noise ratio xCA(j) for the cell averaqing is calculated as*1
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CA(J) P-FAD - I / N

'CAWJ = - (5.7)

and the input SNR, xG(j), for the "greatest-of" is calculated as

1 NP/ G(j) PFAD
_XG(j) : D (5.8)xG(j)Gl

where j is an index for the 21 Monte Carlo obtained probabilities of

detection corresponding to each of the 21 input signal-to-noise ratios,

i.e., from 0 dB to 20 dB in increments of 1 dB.

After converting xCA(j) and xG(j) to decibels, an average signal-

to-noise difference is calculated as

21 xCA(J) - XG(J)
EAdB 21 (5.9)
j=l

" The results, given in Table 2, indicate a range of average signal-

to-noise differences for the Swerling I target as 0.115 dB to 0.215 dB.

These results are comparable to analytical results of [8] and [13].

Table 2. Signal-to-Noise Ratio Comparison of Cell
Averaging and "Greatest-Of" CFAR Processors

PD N Ed B

D
8 0.206

10 16 0.175
32 0.115

8 0.215

lO - 4  16 0.190
32 0.142

8 0.192
10- 5  16 0.205

32 0.150

S ---- *,•-..-
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5.4 Detector Law Performance Comparison

The recent introduction of digital technology to radar signal

processing has necessitated the use of linear detectors for amplitude

extraction. This is a result of the bit growth associated with a

squaring function, i.e., for B bit input the output requires 2-B bits.

It is further noted that an exact linear detector is the square

root of a square law detector. Hence, the actual detector used is an

approximation to the exact linear detector. A number of these algo-

rithms have been designed and normally take advantage of the divide by

two which results from right shifts of digital words. Two commonly

found algorithms are

R = MAX (1II ,IQI) + 1 MIN (III,IQI) (5.10)

and

R = MAX (III,IQI) + MIN (III,IQj) (5.11)

where R is detector output and III and IQI are the absolute values of

the in-phase and quadrature inputs. Since there are a number of

detector approximation algorithms, no processor analysis is performed

using these algorithms.

The performance curves given in Figures 30 through 37 were

obtained for the cell averaging and "greatest-of" CFAR processors

using exact square law and linear detection. Again the probabilities

of detection obtained by the Monte Carlo simulation are plotted versus

the input signal-to-noise ratio. The results obtained for a particular

CFAR technique and both detectors are plotted together.

It can be seen that the performance of the square law detector is

superior to that of the linear detector for any combination of target
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model, average probability of false alarm and window width, for either

CFAR technique. For the target of greatest interest, i.e., the Swerling

I target, the detection difference between using a square law or a

linear detector is small.

The actual PFAs determined by the Monte Carlo simulation for the

linear detector system are given in Table 3.

Table 3. Linear Detector Probabilities of False Alarms

PFAD  N PFACA PFAG

8 0.114-2 0.98-3
10- 3  16 0.112-2 0.89-3

32 0.98-3 0.89-3

8 0.125-3 0.10-3
10- 4  16 0.99-4 0.93-4

32 0.103-3 0.99-4

Average signal-to-noise ratio differences AdB are calculated for a

particular CFAR procedure and the probabilities of detection obtained

for the two detectors. A positive KdB indicates a superior performance

for the square law detector. The average signal-to-noise ratio differ-

ences KdB are given in Table 4 for a cell averaging CFAR and a Swerling

I target and in Table 5 for a "greatest-of" CFAR and Swerling I target.

The results indicate that the difference in the performance obtained

for either detector and 32 reference cells is at most 0.22 dB. Hence,

most results obtained for a square law system could be used for a

linear detector system as well. This is an important conclusion since

the theoretical analysis of the CFUR processors is obtainable only for

a square law detector, and analysis costs are reduced by not having to

simulate both detectors.

7 V I - - . ."-
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Table 4. Signal-to-Noise Ratio Comparison
for Different Detector Laws and

a Cell Averaging CFAR

P- D N -dB

8 0.240
10-  16 0.183

32 0.142

8 0.210
10-4  16 0.172

32 0.148

Table 5. Signal-to-Noise Ratio Comparison
for Different Detector Laws and

a "Greatest-of" CFAR

N -dB

8 0.45
10-  16 0.30

32 0.22

8 0.43
10-  16 0.29

32 0.21

5.5 Clutter Edge Performance Comparison

One problem which must be solved by adaptive detection techniques

is th- regulation of false alarms in nonhomogeneous interference. For

radar unis would be chaff or weather clutter distributed in range.

The boundary of this interference, i.e., the clutter edge (Figure 11)

will move into (or out of) the reference cells as the range cell of

interest approaches (or leaves) the clutter area. Generally, the

siqnal-to-interference ratio in the clutter area is low and the proba-

*ility of detection is small. Hence, the deviation of the false alarm

..."...r the oriqinally designed rate is of greater importance.

i ' I I , , l i I l i I I i I.. . .. ..... " •....... . .. .
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It will be assumed that the range extent of the clutter will be

sufficient to eventually cover all of the CFAR range cells, i.e., the

reference cells and the cell of interest. The clutter will be described

mathematically as white Gaussian noise with the ratio of the reference

cell noise variance to the cell-of-interest noise variance as

2

n n= l,2, ... N (5.12)

It has been shown [19] that for the cell averaging CFAR

C + . (5.13)
n=l

For the condition where the clutter occupies N1 <_ N/2 reference

cells, then Tn = a 2/a2 = Tc In each of these cells and Tn 1 for

n C

non-clutter cells, it follows that

N-N1

PFACA = PFA ( D-"/N - )](5.14)

where PFA D is the homogeneous interference design value.

For N/2 .N1 <N, then the cell of interest will also contain the

clutter and Tn = 1 for the clutter covered cells. The uncovered cells

will have Tn = cY /- = It/r. Thus

[I + -AN I[-(N-NI) IN/N

" (5.15)

Theoretical results for the "greatest-of" CFAR in nonhomogeneous inter-

ference have been performed only for restrictive cases [11]. The Monte

Carlo simulation allows not only for verification of cell averaging'1J

t . . . ...- .. -,-,- .. . .. .

i ' I I *] I I .. i i.. .. - * S' ' ', ' 
' "

, " . . .
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theoretical results but also determination of the "greatest-of"

performance.

Performance comparison curves are shown in Figures 38 through 43.

These curves give the probabilities of false alarm versus the number of

cells covered by the clutter for the cell averaging and "greatest-of"

CFAR processors. The plots contain the cell averaging theoretical

analysis and the Monte Carlo results. There are two regions divided by

the cell of interest.

In region one, where the clutter edge enters either CFAR processor

window, the probability of false alarm is smaller than the originally

designed probability of false alarm. Hence, this region is not

important since both processors will maintain the false alarm rate

below the design false alarm rate. For this region the PFAs determined

by the simulation produce erroneous or no results for probabilities of

false alarm less than lO- . However, the cell averaging theoretical

results, Equation (5.14), are plotted.

In region two, where the clutter is in the cell of interest and

there are at least N/2 + 1 reference cells, the probability of false

alarm is now greater than the design probability of false alarm for

both processors. The worst case for both processors is when the cell

of interest and N/2 + 1 reference cells are covered. The actual

probabilities of false alarm are given in Table 6.

It is readily observed that both CFAR processors cannot maintain

the design probability of false alarm in certain clutter edge condi-

tions. However, the "greatest-of" CFAR is less sensitive to this

environment. From Table 6 the probabilities of false alarm for the

cell averaging CFAR are a factor of 1.4 to 7.4 higher than the
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"greatest-of" probabilities of false alarm. This factor, which shows

the difference in performance, is a function of the design probability

of false alarm. As shown in Moore and Lawrence [11], for a PFAD  1O6

N = 32 and Tc = 100, the cell averaging CFAR probability of false alarm

is 57.5 times greater than the "greatest-of" probability of false alarm.

This feature is the primary advantage that the "greatest-of" CFAR has

over the cell averaging CFAR.

Table 6. Comparison of Clutter Edge Probabilities

of False Alarm (PFAD = 10
-3

____10 Tc 100

N PFACA PFAG PFCA PFAG

8 0.93-2 0.66-2 0.14-1 0.77-2
16 0.15-1 0.54-2 0.21-1 0.56-2
32 0.18-1 0.35-2 0.26-1 0.35-2

5.6 Quantization Consideration

Recent radar signal processors are implemented digitally, hence,

the effect of quantization noise must be considered when specifying a

desired probability of false alarm. For this analysis the quantization

or A/D conversion will occur after the detector with wordlengths of 6,

8, and 10 bits and the wordlength is not truncated in the CFAR

processor. Since a given CFAR processor could have any combination of

wordlengths, truncation schemes and assumed saturation level, no effort

will be made to determine a general method to maintain a given false

alarm.

The quantization errors for 8 and 10 bits wordlengths are negli-

gible, thus. only the results for 6 bits are given in Tables 7

i .
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through 10. Tables 7 and 8 give the probabilities of false alarm for

the two CFAR processors in homogeneous noise with a2 = I and a 2=2 and

6 bits of quantization. Table 9 gives the average signal-to-noise

difference, based on the cell averaging CFAR as described in this

chapter, for both CFAR processors and 6-bit quantization. Table 10

gives probabilities of false alarm for both processors, linear detector,

and 6 bits.

Table 7. Quantization Effects on Probability

of False Alarm (Square Law; 6 bits, a2 1)

PFAD NG

8 0.55-3 0.52-3
10 -  16 0.57-3 0.71-3

32 0.78-3 0.82-3

4 8 0.19-4 0.51-4

10 -  16 0.51-4 0.57-4
32 0.64-4 0.66-4

8 --- 0.27-5
10-  16 0.19-5 0.42-5

32 0.36-5 0.64-5

Table 8. Quantization Effects on Probability

of False Alarm (Square Law; 6 bits, a 2 = 2)

PFA D  N PFA A FA-G
8 0.95-3 0.850-3

l0-  16 0.94-3 0.103-2
32 0.10-2 0.930-3

8 0.68-4 0.910-4
10-  16 0.93-4 0.105-3

32 0.106-5 0.112-3

8 0.50-5 0.670-5
l0 16 0.77-5 0.860-5

32 0.79-5 0.108-4

ILF ; .. . ..... .
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Table 9. Quantization Effects on Signal-to-Noise
Ratio (Square Law, 6 bits)

PFA N CA G
D A G

8 0.362 0.418
10 16 0.286 0.116

32 0.264 0.248

8 0.460 0.256
10 16 0.314 0.257

32 0.280 0.217

5 8 0.600 0.382

10 16 0.365 0.276
32 0.294 0.240

Table 10. Quantization Effects on Probability of

False Alarm (Linear Detector, 6 bits a2  1)

PFA D  NPFACA PFA G _

8 0.117-2 0.75-3
10 16 0.107-2 0.89-3

32 0.980-3 0.86-3

8 0.124-3 0.101-3
10- 4  16 0.108-3 0.970-4

32 0.108-3 0.100-3

It is observed from Table 7 that the probability of false alarm

has decreased for both processors which is undesirable since this is

not the original design value. Even if the CFAR scale factors K and KG

are adjusted to obtain the design probability of false alarm, the proba-

bility of false alarm would change if the standard deviation of the

noise changed as shown in Table 8. Since the probability of false

alarm (Table 7) decreased due to quantization, the probabilicy of

detection is also reduced. This is s own in Table 9 where the average

signal-to-noise differences between no quantization and quantization

"[l - " a I I i d , : : . . . ,: . . ., , ,t ... .- .. •. -.
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are given for both processors. Table 10 shows no real difference in

probability of false alarm due to quantization because of the reduced

dynamic range of the linear detector outputs.

The effects of A/D quantization and finite wordlengths must be

considered when implementing a digital CFAR processor. Even though some

analytical effort has been performed [20], a more complete study can be

achieved only through simulation.

5.7 Non-Gaussian Interference Results

The cell averaging CFAR and "greatest-of" CFAR processors assume

the noise amplitude distribution is Gaussian with an unknown power.

In several instances this is not a valid assumption and a changing

probability density function can be encountered due to a lack of

clutter rejection by the MTI.

Several investigations of natural clutter characteristics have

shown that clutter returns can be described by log-normal or Weibull

[18] types of distributions where the Weibull pdf includes the

Rayleigh pdf as a special case.

The Weibull pdf is a single variate function having two

parameters, a and b, and is given by

K(O 0 b-l- Ob(0) a exp[ ,(a]  !1

where a is the variate in terms of the clutter backscatter coefficient,

b = 1/A (A = Weibull slope parameter) and

a (Ob(5.17)
0 -n2

where T = median value of Weibull pdf.
m
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The probability of false alarm performance against Weibull for

A 1, 2, 3 for both CFAR processors is given in Tabies 11 through 13.

For A=I, the Weibull pdf reduces to the exponential pdf, therefore,

the probability of false alarms obtained are the originally designed

values.

For A=2 and A=3, which are representative of natural clutter [18],

the probabilities of false alarm increase by a factor of approximately

100 and 1000, respectively, for both processors. This increase is

unacceptable.

Table 11. Probabilities of False Alarm in Presence
of Weibull Clutter (A=I)

PFAD  N PFACA PFAG

8 0.112-2 0.890-3
10-  16 0.117-2 0.118-2

32 0.112-2 0.106-2

-48 0.119 - 0.125 -
10-  16 0.106-3 0.111-3

32 0.110-3 0.129-3

8 0.102-4 0.75-5
10-  16 0.133-4 0.142-4

32 0.117-4 0.118-4

Table 12. Probabilities of False Alarm in Presence
of Weibull Clutter (A=2)

ANPFAD  NPFAA G

3 8 0.331-1 0.252-1
10 16 0.298-1 0.250-1

32 0.283-1 0.237-1

8 0.170-1 0.136-1
10-4  16 0.164-1 0.129-1

32 0.154-1 0.125-1

8 0.878-2 0.686-2
10 16 0.916-2 0.699-2

32 0.905-2 0.717-2

7
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Table 13. Probabilities of False Alarm in Presence
of Weibull Clutter (A=3)

PFAD  PFTCA PFAG

8 0.619-1 0.500-1
l0 °3  16 0.498-1 0.410-1

32 0.435-1 0.356-1

8 0.431-1 0.355-1
10 16 0.359-1 0.291-1

, 32 0.307-1 0.248-1

8 0.304-1 0.246-1
lO-  16 0.265-1 0.210-1

32 0.229-1 0.181-1

A CFAR processor has been designed which maintains false alarm

regulation in log-normal and Weibull clutter [21]. Also, a Weibull

loss has been presented for the cell averaging CFAR designed to main-

tain a constant false alarm rate in various Weibull clutter environ-

ments [16].

5.8 Interfering Target Results

The detection performance of both CFAR processors will be affected

by a target or targets occupying the CFAR window when a target is in

the cell of interest. The interfering target(s) can reduce the proba-

bility of detection to an unacceptable value as shown by Finn and

Johnson [14] in their Figure 18 for a square law detector and a target

pair using a cell averaging CFAR.

For a limited detection performance comparison, two Swerling I
targets will be assumed: white Gaussian noise and a square law

detector. Three cases will be simulated: 1) the target of interest

is 10 dB above the noise and the interfering target is 7 dB above the

noise, 2) the target of interest and the interfering target are both
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10 dB above the noise, and 3) the target of interest is 10 dB above the

noise and the interfering target is 13 dB above the noise.
The probabilities of detection, PDICA and PU determined by the

simulation are given in Tables 14 through 16. Using Equation (3.5) and

the probabilities of detection, IF signal-to-noise ratios, SNRCA for

the cell averaging CFAR and SNRG for the "greatest-of" CFAR are

calculated. The last column, ASNR , provides a measure of performance

comparison between the two processors.

It is readily observed that the detection performance decreases as

N decreases. Even for a large N, i.e., N=32, the cell averaging CFAR

suffers a detectability loss of 0.7 dB, 1.2 dB, and 2.0 dB for cases

1, 2, and 3, respectively. The signal-to-noise difference, ASNR , gives

the amount the input SNR could be reduced for the cell averaging CFAR

and maintain equivalent performance with the "greatest-of" CFAR. The

range of ASNR is from 0.3 dB to 0.7 dB.

While both processors are sensitive to an interfering target

environment, the cell averaging CFAR is superior to the "greatest-of"

in this type of environment. This advantage would have to be consid-

ered when designing a CFAR processor.

Table 14. Signal-to-Noise Ratio Comparison
for a 7 dB Interfering Target

DPFA- N -CA SNRCA PG SNRG ASNR

8 0.266 8.2 0.239 7.8 0.4

10- 3  16 0.381 8.9 0.357 8.5 0.4
32 0.449 9.3 0.431 9.0 0.3

4 8 0.140 8.3 0.124 8.0 0.3
10-  16 0.259 8.9 0.236 8.6 0.3

32 0.334 9.4 0.317 9.1 0.3

5 8 0.066 8.4 0.058 8.1 0.310 -  16 0.166 9.0 0.148 8.6 0.4

32 0.246 9.4 0.230 9.1 0.3

- _A 6 - - -"&A'
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Table 15. Signal-to-Noise Ratio Comparison
for a 10 dB Interfering Target

D NCA S"'CA PDG ASNR

3 8 0.194 7.0 0.155 6.3 0.7
10-  16 0.318 8.0 0.278 7.4 0.6

32 0.406 8.7 0.374 8.3 0.4

8 0.097 7.3 0.081 6.8 0.4
l0-  16 0.205 8.1 0.175 7.6 0.5

32 0.294 8.8 0.264 8.4 0.4

8 0.044 6.4 0.036 6.1 0.3
10 16 0.126 8.2 0.106 7.8 0.4

32 0.210 8.8 0.183 8.4 0.4

Table 16. Signal-to-Noise Ratio Comparison

for a 13 dB Interfering Target

PF-D N P'CA SNRCA _-D G  SNRG ASNR

8 0.124 5.6 0.099 5.0 0.6
10-3  16 0,243 6.9 0.196 6.1 0.8

32 0.348 7.9 0.299 7.2 0.7

8 0.056 3.5 0.046 2.8 0.7
l0-4  16 0.146 5.1 0.116 4.4 0.7

32 0.242 6.3 0.201 5.7 0.6

8 0.024 6.4 0.019 6.1 0.3
lo"  16 0.085 7.2 0.066 6.2 0.5

32 0.164 8.1 0.133 7.5 0.6

5.9 Summary

The detection performances of the cell averaging and "greatest-of"

CFAR have been determined and presented. Both CFAR processors were

designed for three common probabilities of false alarm and the actual

probabilities of false alarm were obtained by the Monte Carlo simula-

>tion. For a given probability of false alarm, the two processors have

essentially equivalent detection performance with the "greatest-of"

having approximately 0.2 dB loss as compared to the cell averaging.
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While both processors have only a slight degradation when a linear

detector instead of a square law detector is used, their performance is

unacceptable in Weibull clutter and is affected by finite wordlength

processing.

The two main areas of performance comparison are the probability

of false alarm regulation in clutter edges and the probability of detec-

tion in an interfering target situation. The "greatest-of" proved to

regulate false alarms much better in the clutter edge environment while

causing an additional detection loss, between 0.3 and 0.7 dB, in the

interfering target environment as compared to the cell averaging method.

It is obvious that the selection of either the cell averaging CFAR

or the "greatest-of" CFAR should be based on the expected radar envir-

onment. Due to similarity in their implementation, a combination of

the two processors and supporting selection logic could provide an

overall improved CFAR performance.

A



CHAPTER VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.0 Summary

A computer simulation has been developed for a performance compari-

son of two commonly known CFAR techniques. The two techniques are the

cell averaging and "greatest-of." The comparison is based on the proba-

bilities of detection and the probabilities of false alarm obtained by

performing Monte Carlo passes of the simulation.

The two CFAR processors were designed for average probabilities

of false alarm of 10- , 10- , and 10- . These false alarm rates were

verified by the simulation. Probability of detection versus input

signal-to-noise ratio curves for each false alarm rate were generated

for both processors. Two target models were used: the steady or non-

fluctuating target and the Swerling I target. The probability of

detection results were utilized to make a signal-to-noise ratio

difference comparison and indicated that the cell averaging CFAR would

require approximately 0.2 dB less input signal-to-noise ratio for

equivalent performance to the "greatest-of" CFAR.

The detection performance for a linear detector system was deter-

mined for both CFAR processors and target models. Comparing the

results to a square law detector system indicates that the detection

performance is degraded by the use of a linear detector. However,

this degradation is negligible, especially for a Swerling I target.

Two important analyses were performed: thp clutter edge per-

formance comparison and the interfering target results.

88
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A clutter edge, i.e., residual clutter distributed in range,

affects both CFAR processors by increasing the probability of false

alarm above the design value. The amount the false alarm rate

increases is a function of the design false alarm rate and the CFAR

window size. The "greatest-of" technique provides better false alarm

control than the cell averaging technique in a clutter edge condition.

An interfering target, i.e., a target which is in a reference cell

of the CFAR processor, degrades the detection performance of both CFAR

processors. In general, the amount of degradation is a function of

the interfering target power, the design probability of false alarm and

the CFAR winlow size. The cell everaging technique provides better

detecticn performance than the "greatest-of" technique in an interfer-

ing target environment.

The quantization analysis demonstrated that the probability of

false alarm and the probability of detection are affected by finite

wordlength arithmetic. For some finite wordlength CFAR processors, the

false alarm rate will change as the interference power changes.

The non-Gaussian interference analysis demonstrated the unaccept-

able false alarm rates obtained in Weibull interference for both CFAR

processors.

6.1 Conclusions

The cell averaging and "greatest-of" CFAR processors can be

designed to maintain a constant false alarm rate in homogeneous white

Gaussian noise. The probability of detection obtained for a given

probability of false alarm increases as the number of CFAR processor

reference cells increise for both processors. The two CFAR
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techniques have almost equivalent performance in white Gaussian noise

with the cell averaging CFAR having a slight advantage.

The simulation results have shown a negligible improvement obtained

for a square law detector over a linear detector. Hence, the analytical

results developed for the two CFAR processors and a square law detector

could be used to describe the performance for a linear detector system.

Whereas both processors fail to maintain the design probability

of false alarm in a clutter edge environment, the "greatest-of" tech-

nique is affected less than the cell averaging technique and should be

a prime CFAR candidate if such an environment is anticipated.

An interfering target will degrade the detection performance of

both CFAR processors. The cell averaging technique is affected less

than the "greatest-of" technique and should be a prime CFAR candidate

if interfering targets are considered to be a dominant problem.

Finally, the performance of both processors is affected by finite

wordlength arithmetic and the phenomenon should be analyzed when imple-

menting either CFAR technique. The unacceptable false alarm rates

obtained for both CFAR processors when Weibull clutter is in the

reference cells requires utilization of a different CFAR if this is the

expected environment.

The results agree with those previously available. But the inter-

fering target performance comparison and the "greatest-of" performance

in Weibull clutter and non-Gaussian interference represent results

presently not available.

1I
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6.2 Recommendations

The recommendations for future work are to:

1) Improve the random number generator so that probabilities

of false alarms less than 10- can be verified.

2) Use measured radar data as an input to the simulation to

compare the CFAR processors.

3) Perform an extensive study of linear detector approxima-

tion algorithm's effect on CFAR performance.

4) Perform an extensive study of finite wordlength effect

on design of and performance of CFAR processors.

5) Determine realistic models of jammers and perform a

study.

6) Develop environmental models which contain clutter edges

and interfering targets and determine selection logic for the

"greatest-of" and cell averaging CFAR processors to optimize CFAR

performance. Utilization of tracking information should be considered.

h..
V Aj
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APPENDIX A

FIXED THRESHOLD PROBABILITY DENSITY FUNCTIONS DERIVATIONS

A.1 Introduction

This appendix gives derivations for the probability density func-

tions for the square law or linear detected steady target and for the

square law detected Swerling I target. These probability density

functions are common equations and the derivations can also be found

in Marcum [1] for the steady target and Swerling [2] for the Swerling

I target.

The characteristic function approach is used to obtain the pdf for

the square law detected output. The steady target is assumed to be

distributed in the I and Q channels by

S = P cos (e)

SQ = P sin (e) (A.l)

and

y = (SI + X1 )
2 + (SQ + XQ)2

and this changes the pdf's for xI and xQ by a shift to these mean

values, i.e., zero mean Gaussian

(x - Sk 2

1 PXk) k - 202exp - k= I, Q (A.2)

In the following derivation the subscript k will be dropped on xk

and S to simplify the equations.
k

The characteristic function for x2 is

II
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2( Eexp(jvx2 ) 1 f exp (x-S) 2 j v  x2 ]x 2 ( V= ~x~jx)- u '-co 2o2 Jd

F 22

1700exp x 2( jv2a 2-2Sx +S 2] . (A.3)

Vr?,TO f-* 2a2ld

Now let C (1 -jv2a 2 ) and complete the square,

X" -x + _- _ _I

(V)_ 0 exp C - 2 C2  dx

2 f 2

x ( V 2 CY (2a /C)

= 2 e 2x 1 exp _x2) dx.
_ xpL(o/C)J -Tr (2a/IC) .

C(A.4)

After integration,

2 (v) = 1 exp[.l-
x

Consequently, the characteristic function for y is

( 2 2)(1

y(v) =  12(v" 2(v) =  exp
X Q 2 2 2

2  2 e 4exp -

2cy Ly C] 1 j20  j v

(A.5)

Let x - P2/(2a2) and -v = u, then

exp -2
exp(.-x) L2 ju - I/21 1 exp[juy]du

27(2a ) - , ju + 1
2o)2

2_. 2  X_ _'Y_ u Y)

" ,:' ;' ',:, , - ' . ... . .... .- ' , "'- =.,,... .. .. .. .. 2.
-~~2 2o 1 - '" ' _ ' : . b ..



94

2 xp Io (2 y u(y) (A.6)
2a 2o2 2

This pdf is the well known Rician distribution [3]. A linear detector

is given as z = Vy/ and by a change in variables the pdf for a linear

detector can be obtained from Equation (A.6).

A.2 Derivation of Probability Density Function for a

Square Law Detected Swerling I Target Plus Noise

When a Swerling I target is assumed, the results for the pdf are

simplified. This type of target assumed that the group of N returns

have a constant signal-to-noise ratio but that from group to group the

pdf is

p(x) L _ exp[-x/-]u(x) (A.7)

x

where x = P2/(2a 2) and x is the average signal-to-noise ratio. This is

used with the characteristic function of Equation (A.5) to obtain

$y(v) = E{,Y(01 = f y(v)p(x)dx

y(v) = 0f 1exp[-x] exp [ exp dx

1_ exp x(-l + C ]dCX .

cx-Il 1 i)[exp(-co) - exp(O)] -  -l

I-I 1
xv-x+j2vx 1 -j2o 2 v(l+)

y(v) 1 1 (A.8) '

2-1 (1+ x) -iv + "2
2 2 (l +x)

= r

-- 2Y|
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The pdf for y can be determined from this to be

=() 2 2 1+X exp 2[ 2y u(y) (A.9)

'I+
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APPENDIX 
B

DERIVATION OF THE GREATEST-OF CFAR PERFORMANCE EQUATIONS

B.0 Introduction

This appendix gives the derivations for the probability of false

alarm and probability of detection equations for the "greatest of"

CFAR. The derivations were originally derived by Moore [8]. It should

be noted that in an independent concurrent effort, Hansen and Sawyer

[13] have derived the same equations.

B.l Derivations of the Greatest-Of CFAR Performance Equations

In the "greatest-of" CFAR method two independent thresholds are

calculated, then the largest one is selected, viz.,

I M

K M
Y2 = M j l

Yth = MAX (Y1 9 Y2) (B.1)

where a simplified notation is used for the subscripts on y and it is

implied that the ranges of the summations are M but that i=j.

The pdf descriptions of Y and Y2 can be given by

2o2  2 -- 1 exp M u(Y) (B.2)

II
Papoulis [9] gives an expression for finding a pdf of the maximum of

two random variables, cf., Equation (15), p. 193,

PGo(Yth) = 2F(Y)p(Y)IyY = 
2Fy(Yth)Py(Vth) (B.3)

th

where F Y H is the cumulative distribution utnction for Y.
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This could be used with fixed threshold probability of false alarm

Equation (2.8) to obtain the expected PFA, i.e.,

00 Fx -" 1] P ( d
GO e Lo 202 J GO(Yth dth

= 2 00exp .]F( F(t~ t (B.4)L 2o y( Y)YYhdt
This can be integrated by parts as follows:

u =F Y(Yth) du = F ,(Yth )d Yth

dv = exp t]L (th dYt

v = fexp [Y t]h PY(Yth)dYth .(B.5)

Note that v is in the same form used to obtain PFA for a cell averaging

CFAR Equation (3.3), but this is not a definite integral. It follows

that

V 1 fbMl1 exp[-b]db

(1 + M) M )1

b Y th( + M

t (1+ )]
V -Y expl (2 K M ! 86

+A c =

M)V
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where PfA is the value associated with a conventional cell averaging

GFAR of window size M. Thus

GOA 2[uvl" - fvdu] 2FY(Ythv

M-1l I+ (Yt F M
+ 2FA m, O ) th

202) e+ 2  K JPY \th/ulth

The first term, F Y(Y th)v, yields 0, thus

~~GOM-l(MK 202? exp [a a(1 + l(2a
P O=2TA~ m, f L \KgY(2a

m=O 0

(M)M2  Ml (M~f am+M-l exp[ a(1 KM\]
m=O Kf

2 M-1 (m +M -l1

= F(Ml)MM

MPUl (m+ M - I (B.7)

Since~K (=i K~ FA ,te

2M- M1! (mM-) - IB8

Thne prob Pailit ofdtecn fraSeln agtwt

"gretes-of FA1 is given by

(M 'S 1 1m1(1+VA
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4 DGO exp th P GO(Yth)dYth2f o + )

2O 2a 2 exp a -j Fy(2c2a) Py(2o a)da (8.9)

Integration by parts gives

u Fy(2a 2a) du = Fy(2a 2 a) 2a 2da

dv 2a 2 expf- IPy(2f2a)da

'..~~ a =M) M "- 1, a' exp [(M + -l-x a]da

m 
00T _ 1 exp(-b)db

. where

,' Thus, using the probability of detection for an equivalent sized cell

~averaging CFAR,

M-f bm

I(

(M I R ~P exp(-b) I m-2 (B.10)

0 m 0 0

Kw M=i

(,GO)v : 2P 2r2 x(-O a e Xa) da

+-I a-p

anda

,~~- + +x_

2P 0 I (K m+M1 12•'"~~ ~~ ~~ (M M " ..-- " =O m! a exp_--2- a +-' .-'-" da- - -
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c [~+ a i
(-M)M(- 7 I; +~ 2 m+N- exp[-c]dc

1 ++/2- D MMM-

2PO 1 (m+M -I)!M= I +d 2M + 1( 0

( + K']

2P I__ (B.13)

D 1 E (m + m- 1

(1(M " + -- /M) m m!(l + KI m

This is the desired expression for the probability of detection.

1 + K

I~ +X
2F.M-

(I+'-'4) ~ m 1+ D /
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APPENDIX C

MONTE CARLO RUN ESTIMATION

The utilization of Monte Carlo simulations for estimation of

probabilities of false alarm and probabilities of detection has a

statistical uncertainty associated with it. This appendix determines

values required to give a priori probabilities for a specified range

of the estimated parameter.

Let yn represent the nth target/no target decision for the cell

of interest. Thus Yn will equal either 0 or 1. The probability that

Yn = I will be denoted as p. Two cases are considered, viz., noise-

only and signal-plus-noise.

Thus

Prob [yn = 1 I noise only] = p = PFA
Prob [yn = 1 I signal-plus-noise] = p = PD (C.l)

an estimate of p can be formed by calculating the arithmetir mean of

N determinations, i.e.,

Nnj Yn 
(C.2)

n=l

This represents an unbiased, efficient and consistent estimator to the

expected value of yn' It is possible to obtain the mean and variance

of y in terms of the mean and variance of yn' i.e.,

, N
E(y-=) 1: Ely n) 

= Ely =p
J n=1

2Ej(y -p)2 VAR(y) VR p(l- p) (C.3)

i;

Efy-) VR~) N - N

0.
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One approach to finding the required value for N is to use Chebyshev's

Inequality, i.e.,

P[JY - E~ylj I e] < VAR( ) = p(l -p) (C.4)y y2 2Ne

letting the value of e depend on p, i.e.,

e = kp (C.5)

yields

p[-e < y - p < el L_ I -(1 - 2P) =K .(C.6)

pNe

Thus if the estimate (y) to p is to be within some specified range of

p(±e) with better than some specified probability (K) then Equation

(C.6) can be used to determine the sufficient value for N. Typical

results are given in Table C.I.

Table C.l. Values of N Obtained by Chebyshev's Inequality

K =0.5 K= 0.9

P k = 0.01 0.1 0.25 k 0.01 0.1 0.25

10-6 2 x 101 12 x 10 8 13.2 x 10 7 1 x 10 11 1 x 10 9 1.6 x 10 8

10- 6  2 x l0 2 x 108 3.2 x 107 1 x 1010 1 x 108 1.6 x 108

10- 4  2 x 108  2 x 106  3.2 x 105  1 x 109  1 x 107  1.6 x 106

l0-  2 x 107  2 x 105  3.2 x 104  1 x 108  1 x 106  1.6 x 10

0.5 2 x 10 200 32 1 x 10 1 x 10 160

0.6 1.33 x 10 133 21.3 6.67 x 1O4  667 107

0.7 8.57 x 1O3  85.7 13.7 4.29 x 1O4  429 68.6

0.8 5 x l03  50 8 2.25 x l04  250 40

0.9 2.22 x 103 22.2 3.56 1.11 x 104 ill 17.8

-UK - - I i - - " - - ,r---- . --_ ..... - -
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APPENDIX D

FLOATING POINT SYSTEMS AP-120B

The Floating Point Systems AP-120B is a loosely coupled synchronous

array processor which uses pipelined arithmetic elements. The array

processor uses a 38-bit floating-point format and has a cycle time of

167 nsec. Figure D.1 shows the structure of the AP-120B, which con-

sists of an interface to the host computer, a program memory, a 16-bit

integer ALU, data memory, table memory, accumulators, I/0 interface,

and arithmetic elements.

MEOY ILTR UATR DT MEMORY INTEGER
BLC LC MEMORY ALU

:1 FLOATM FLOAflUG
PONLT POINT

4 MULT. ADDER

Figure D.1. AP-120B

Am,
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The interface controls data, program transfer, and format conver-

sion between the host and array processor.

Control consists of two elements: a 16-bit ALU which performs

integer address indexing and loop counting for all of the memory

elements. The second element is the program memory which contains the

microcode to be executed in the array processor. This memory is 64

bits wide with each word being subdivided into 10 command fields. Each

command field controls an element in the array processor, thus every

element can be active in every machine cycle.

The main data memory is used for data; the table memory is used

for storing constants and the accumulator blocks for intermediate

result storage.

The AP-120B uses a unique bus structure in that there are dedi-

cated paths between each memory and each arithmetic element, thus maxi-

mizing the flow of operands and resultants between functional elements.

The I/0 interface allows the attachment of peripheral devices

directly to the array processor.

The arithmetic elements consist of a 3-stage multiplier and a

2-stage adder, each stage running at the cycle time of the array

processor (167 nsec), thus a multiply-add can be obtained in every

cycle of the processor.

The software can be broken down into two categories:

a. Control Software - This software supplies the linkage

between the host computer operating system and the array processor.

It is usually in the form of a device driver.

b. User Software - This software enables a user to write

programs for an array processor. Typically, this can be done at two

W4-7K
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levels. A user can program in Fortran by writing a program for the

host computer which consists of a series of calls to the array processor

math library. This math library is supplied by the vendor and consists

of a library of mathematical rcutines which have been coded for the

array processor. Figure D 2 shows an example of such a program to

compute a Fast Fourier Transform. Obviously, when the array processor

is used in this manner, its internal structure is transparent to the

user.

The second level of programming is to program the array processor

directly in assembly language. Usually the vendor supplies an assem-

bler, simulator and debug aids to assist the programmer. Figure D.3

shows such a program written in the assembly language for the FPS

AR-120B. This program calculates Ci - Ai2 + Bi2 where i ranges from

1 to N. The y axis of the figure represents machine cycles, while the

x axis represents flow through the pipelines. The program reduces to

a 4-cycle loop. However, this loop does demonstrate the parallel struc-

ture of array processors, for example, on the first cycle of loop, a

memory fetch, a floating multiply, a memory save and floating add are

all in progress on the same machine cycle (contrast this with a conven-

tional computer). At this level, the programmer has to be aware of the

internal structure of the array processor to maximize performance.

AI
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CALL APCLR Clear array processor

CALL APPUT Transfer data to array processor

CALL CFFT Perform complex FFT

CALL APGET Transfer results to front-end computer ]
Figure D.2. AP Fortran

FETCH STAGE MULTIPLY STAGE ADD STAGE

FETCH A

FETCH B

NOP

SAVEX

FETCH A; FMUIL A, A, SAVEY B

FETCH B; FMUL B, B

NOP; FMUL

SAVEX A; FMUL; SAVEY A 2

LOOP: FETCH A; FMUL A, A, SAVEY B FADO B, A

FETCH B; FMUL B, B FADD

NOP; FMUL; DEC N

SAVEX A; FMUL; SAVEY A2  STORE C; BGT LOOP

DONE: PETURN
* Figure D.3. AP Assembly

II
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Table E.I. Main CFAR Simulation Program

PPQPAM T( -'MULATE A CELL-AMVRA4I'IG
-?. rPf-TE- rA F4rOP COMPARISON OF T-4 TWO

AL .oPjr.4M E, NTE CARLO TECI4NIGUES. T4E

C OrMPAI-40 rw BE MADE FOR JARIOUS
c ChN!PCONTI;' .-4 WORDO LENCTHS.
C
C INPUTS
C
C SEED - UNIFORM RANDOM NO. GENERATOR SEED

C STDV - STANDARD DEVIATION OF GAUSSIAN NOISE

C REAM - MEAN VALUE OF GAUJSSIAN NOISE

C SNRI - INPUT SIGNAL-TO-NOISE RATIO

C mTAR - TARGET MODEL NO.
C mDET - DETECTOR LAU, SO., LAWU.S LINEAR.1

C MUDa - HALF OF CFAR WINDOW WIDTH1

C PFDCA - DESIRED VFAR PROBABILITY OF FALSE PLARM

C PFDGO - DESIGIN GO PROBABILITY OF FALSE ALARM

C NMCR, - "UDER OF MONTE CARLO RUNS

C IPDF - RUN InDE)O PFA.O,PDI1
C "s" - NO. OF SNPRUNS
C NC - NO. OF CELLS CODERED
C TAU - RATIO COiJERED/NOt4-COUERED
C ISKP - CELLS SKIPPED BY CFAR
C 10 - QUANTIZATION: YES>@

C NRIT - NO. OF BITS

C A - UCIBULL PARAMETER
C CPOU - UEINULL CLUTTER ;OUER

c IDCCG DISK IMDEXt CA.O,GO.1
C
C
C CALCULATED INPUTS
C
c CKCA - CA THRIESHOLD CONSTANT
c CKGO - GO YHRESH4OLD CONSTANT

C AMP! - INPUT AMPLITUDE AT IF
C
C OUJTPUJT$
C
C
C PFCA - CA PROBAILITY OF FALSE ALM OBTAINED
c PFG0 - GO PROBABILITY OF FALSE ALARM OBTAINED.

C PDCA - CA PROSADILITY OF DETECTIOM OBTAINED
C PMG - 00 PUODA5ZLJTY OF DETECTrox OBTAINED
C

DIMENSION PFDCA(3 ,PFDCOCD),NUDE(9 ),NMCP9)
DIMENSION DUM(4 ).PDCAC 1W )0DPDGOC I64)
EQUIVALENCE 1CA.DUAt)) tGO.DM()).(DCA VUM(3)),DO.0UM(

4))
REAL MEANM VCR
DATA PFCA31.E-,31.E-4,331.E-S.'
DATA pDO.732SWg...

1 1 2

1 O.S99uE-3.0.aag7E-3.e.94O1-41
ATA N/g4.,16,8.,16.4.8.16/
DATA pqC 3I.EU.32I.9E9,3*I.EI6/
CALL AISSZQ(3.'DK1ICFAR.PLT'.0.HEU')
DEFINE FILE 3cIWLl3.U.JJ)
SEED.0.M 113946

SDV-.
MEAN-.

p1.0

5'&
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Table E.1 (cont 'd)

NK1F-0

* TAUSR.SQRT ( AU)
1SKP.X

A1.

Cpou.1.

IF(NDET.EG.O) o.!QZ22/2.22NDIT
1F(NDET.EQ.1) 0-!12.3*HD!T
CALL APCLR
CALL VCLRCO,1.32767)
CALL APUR
CALL APPUTIA.13.1.2)
CALL APPUT(CPOU,14.1,2) :
CALL APPUT(SEED,16.1.2)
CALL APPUT(STD4D,S.1,2)
CALL APPUT(FMEAf.6.1,8)
CALL APPUT(TAUS,.11.1,2)
CALL APPtJT(G,12,1,2)
CALL APUD
IF(IPDF.EQ.1) Wh1TEM619a)

102 FORMAT(/101.2H H.6X.4HSP4RI.l3X.5HFDCA.13x,4HPDCA,
I 13X,4I4PDGO)

IF(IPDF.EQ.S) IPITE(6,103)
103 FORHATUII.H N.SX.SHPFDCA,13X.4HPVCA,

I 13X,5HPVDGO.13X,4HPFGO)
IF(IPDF.EG.2) URITE(6.I05,

105 FORM1(/IHI1,2 ",3X,2Ht1C.E6cSHPVDCA.13X,SNPFTCA.13X,4MPFCA,
I 13X.SHPVDO.13X.4HPFGO)

C MAIN LOOP
DO a J-.,

* SNRI .0.
* Nu-ma(J)

IFCIPDF.EQ.2) WCLU-NW2*I4
CKCA(PDC(J)*(-.fl2-i.)
CKGO(PVDO(J)3(-.oM )-I.)
IF(MOET.EG 1) OKCA-SGRTCKCAN2:1. 14/NU2
IF(NDET.EQk.1) CKGO-SGA7(CKGO*M)831.14/NU
CALL OPPUT(CKCA...2)
CALL OMI(CKOO.9.1. 2)
CALL APU

IF(IPW.EQ.1) FHMCQ-1.ES

If(IPDF.NE.1) HSN-1
c SIGNL-TO-HISE LOOP

90 3 I-.1S4
AMPI-$ThV*SGT(.1.gbe4SHRI1*.)
CALL APPU(ANI.1,.11
CALL AMI

MU14.NM1*14

C M M TAZOHARV CLUTTER LOOP
D0 5 ICUI.NCLU
IF(ICWU.07.NUI)OO TO 11

4o
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Table E.1 (cont'd)

PPTCA.PFTCA*(1.4TAJ3(PFDCA(J)E2(-1./NU2)-1.)j32(-MC)
GO TO 99

11 Irt1CLU.LT.IMu14) GO TO 5
PFTCA.PFDCACJ 8*CFLOATfNC ),FLOAT(tIU2))
PFTca.PICA*d1.4PDCA(J)S:(-.NIa-.-TAJ)X(C-d2)

99 COIITIU
CALL APU?(SECD.4.1.2)
CALL APUT(SEED.7.1.2)
CALL APUR
CALL UCLR(0.1,4)
CALL T)LM(NU.MMON.NOhR.HDET. ICLU. ISKP, 10, lUE!)
CALL APUR
CALL APGET(DUM.0.4,a)
CALL APUD
IF(MCLU.NE.0) GO TO 10

c PWA ANDl PD CALCULATION
PVCA:CA,(FrU4CR)
PFGO-GO'(Ff#MCR)
PDCA( I 2-cDCA-CA)/FMP1CR
PDGO( I )(DGO-GO)/FNI'IR
IF(!PDV.EQ.1) UITE61I)U.SNRI.WFDCA(J.PDCAdI)PDGOHI
XF(IPDF.EQ.0) URtITEc6,1*1)tUJ2.PFDCA(J),PFCA.PFDGO(J)PFGO

101 FORAAT(2X.12,3XE12.5.4(SX.E12.S))
GO TO 5

C WONSTATIO4AfRY CWTTER PWA AND PD CAL.
10 NC) .NC+1

PDCA(t4CI I CA/FMUCR
PDCA ( MC14I2*1 IOFC
,ca.c+ca.1se

URITt(6,104) tU2.C.PDCAJ.PFTCAPDCA(NCI .PFDGO(J)
I ,PDC4(NCI*NU2*1 2

104 FCANA1T(XI.3X.2.3X,E125.4(SXEI2.5,)

S coNTINUE

3 CONTINUE
c DISK WRITE

IMIW.) G0 TO 2
IF(lPDF.EQ.e) NSH.32CW4841I
IF(IDCO.EGO) URITE3VICI) (PDCAIP). IP.1.NSN)
MFIDMGEQ.1) UR!TE3'ZCI) (PDGOIP.IP-.1.S1U
CO41 14

STO

'EN



SUBROUTINE THLN

PURPOSE: To generate target noise and clutter inputs to CFAR

program.

FORTRAN CALL: Call THLN (NWD2, NMON, NTAR, NDET, ICLU, ISKP, IQ)

PARAMETERS: NWD2 = Half of CFAR window width

NMON = Number of program passes

NTAR = Target model number

NDET = Detector law: Square Law = 0; Linear 1

ICLU z Number of cells covered

ISKP Cells skipped by CFAR

IQ Quantization: No 0 0; Yes = 1

IWEI Weibull Clutter: No = 0, Yes = 1

EXTERNALS: VSQRT, VRAND, VLN, VFILL, QUANT, RANDM, VSQ, VMVL,

VADD, CFR, VNEG, WEIBULL

SCRATCH: SP (0-6, 12-14), DPX (-4, 3), DPY (0, 1)

S

A.

... . .."



Table E.Zd. Subroutine THLN

$TITLE TI4LN
* AF PIPO4PpCI To GENEPATE T(AAGET N

N 9OISE INPUT P CF PROGRAM~
* THERE ARE EIGHT~ INPVTc'
*NWD2 - HALF OF CFAR WINhDOW UIDTH

M Nom - HO. OF PROGRAM RUNS
* hTAR - TARGET MODEL MOC.
* NDET - DETCTOR LAWISQ5O LAWI.OLINEARAI
*ICLU - N0. OF CELLS COVERED
*ISI(P - CELLS SK~IPPED by CFAR
*10 - QATMIZATIOflZ HO.S.YESI1
*IWhEI - UEINUL: hO.S.VESI1

wTwv THLm.s
SEXr 4J61hUCOS
SWT USART.~~tD.ULh,.UFILLOUAt4T, LMtJL
SEXT RAHNq, VS, UUL, UADD. CFAR, vmEG

MD2 $EQu 0

NYAR SEQU 2
MDET SEGIJ 3
ICLU Kau 4
ISKP $EQu 5
IQ SEQU 6
IUEI SEOU 7
icIA sEau 10
Mies Stau 14
ICLY SEOU 12

THLjZLDDPA; DN.13.
NOU IfTAR.NTARI DPX(S)(SPVN
MOIJ tW02.ND2,DPY(0 )<SPFN
NOV NMOfl.NNO?4jDPX(1 )(SPFN1

mOV MDETNDET;DPX(2)<SPVr4
NOV ICLU.ICLUDPXL-1 )(SPFN4
NOV IStP. IS#PSDPX( -a)(SPVN
NOV !G,XQiDP X(3)(SPFh FN
NOV IEI. WhEISDPYC3)(SPV
LDSP! 14 DoIs.
N1OV NI*,N16DPY(I) (SPFN

SLID W?02 CLAiDPX(-3)(SPRI
NOV IONNOIijmDPX(-4 ),SWFN

OP: LDDPMJ 01-13.
= MSIM0 RANDOK NO.CEPIEBATOR
LDIP! 0,93-4.
LDI 1.09-400.
LW!P Z.98-204I.
LOSP! 3,93-6.
LDIP! 4,1134.
LOSP! 5:09-21"0.
LUPA, 09-4.

LDDPAj D1-13.
LWISP ?,DS-DPY(3)
NOV IUEI,IUE!
WE LW!I

LWI LowSP!0334j.

* LISP! 8.98-14.
LOWP " ,11-1.
LOOP, 3,3314003
LW! 4,02-13.
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Table E.2 (cont'd)

JSP .'Iwi:,

LDiNi .D :9..

LDSPI E.Ob-e140e.
LDSPI 3.0-1.
LDSPI 4.DB*1e2Ge.
LDDPA: DR.4.
JSR VLt4
LDDPA; D13.
LOSPI 0.09-21400.
LDSPI 1.03*1.
LDSPI 20.921400.
LDSPI 3,DD-1.
LDSP! & DA13I2W0.
LOOPA; LI-4.
JSP USORT
LDDPA; DB.13.
LI S.DB-4.
LDSPI I.DD34I.
LDSPI 2,DS-1.
LDSP! 3,0-16M.
LDDPA; D3.4.
JSR VRAND
LDIPA; 03.13.
LISP! *.DO.400.
LISP! 1,03.1.
LISP! 2,02-1S.
LDSP! 3,03-400.
LI 4,01-1.
LDSP! S.D3-1OSG.
LDOPA; 03.4.
JsR VSKUI.
LDDPA; DI.13.
LOSPI S,02-400.
LI 1.03.1.
LOSPI 2,DB3-IMIS.
LDI 3.03.1.
LDI 4.DB*IM

LDWAz 03-13.
LDI 6.31-400.
LMIP 1.03-1.
LIP 2.03-40.
LI 3,09-1.
LISP! 4.0-14M0.

LUIPAS 03.13.
LIP 0,09-400.

LISP! 2,118-21400.
ALOSPI 

3.03.1.
LISP! 4.01-40S.
LIS 093-1.
LISP! SDl-*a"66

LO 109 3313.

LI 1,0991
LISP 13-21466.VA
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Table E.2 (cont'd)

* LDSPI 4.D8-1*G".
LOSPI S,01.i.
LDSPI 6.VS14.10e0
LDDPA; 00-4.
JSR U7MUL

LNWEIf LDDPAj DI.13.
LDP 2D.DPxcSJ

MOU HTA,.HTAR
lEG CASO
ire CASI

* CASE 0 TARGET GENERATOR
CASO: LDOPAi DB-13.

LDSPI $.4110.
LOSP! 1,ft33-N#9l
LOSPI 2,.31..
LDSPI 3.D3.1000S.

LDDPA. 33.13.
imp i~m

* CASE I TARGET GENERATOR
CASI: LDDPAS 33-13.

LDSPI S.DB3.S~
L.DSPI 2.DB3..
LDSPI 3.D3.1"00.

LDDPAj 03.4.

LDDPAj D3-13.
LOSPI *.D3-30000.
LISP! I.D3.1.
LISP! 2.0D30000.
LISP! 3.03.1.
LOSP! 40-19000.

o LVDP%~DD34.

LVOPA; IB-13.
I.ISPI 6493-300.
LDSP! 1,33.1.
LISP! 2,93W
LISP! 3.33.1.
LISP! 4,81W

LDSPAS DI-13.
LDSP! 0,99-30M.
LDW1 1,38-1.
LOSP! 2,DD-3W.
LISP! 3,33-1.

LDOPAS 33-13.
LISP! 0,00-3W.
LDI 1,3-1.
LI 3,30.
LWIS 4433-1.
LISP! 5 VD.100S.

*C~s LOSPU&DI-13.

001+4W

A.

V1
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Table E.2 (cont d)

LOSPI 0, to-i3s3.

LDSPI .31
LDSPI 2.DI-3SO
LOSPI 3.01-1.

LDSPI 6.0-10604.
!iVWPA 03.4.

LVDPAj 03.13.
LDSP! 4.0310990.
LOSPI 1.03.1.
LDSPI 2.03.3fl@*.
LDSPI 3.03.1.
LDSPI 4,DD.160.
LDDP4 03.4.
JSR ta
NOISE ONLY
LDbftjD3*13.
LOSPI *,03-DPX(f*
LDSPI 13,03.493.

CU SB HUD2.CLAkDPX( -3) (SPFN
CLtLDDPA ; 0313.

LDSPI *,DB.DPX(-3)
LDSPI 1,DD*DPX(-2)
LOSPI B.03.11.
LOSPr 3,DB-DPX(-3)
LDSPI 4,03.DPX(-2)
LDSP! 5.03-2fl.
LDDPAj 03.4.
JSR tJSMUL
LDDPAj 03-13.
LDSPI 13,DD.DPx(-3)
INC ICLAiDPX-3)(SPFN
DEC ICLT
BEG NOIS
JPP CLU

IIOISt LDDPtj 03.13.
LOSPI *,D3-400.
LDSPI 1,03.1.
LDSPI 2.bl-400.
LOSP! 3,03.1.
LOSPI 4,DB.8O400.
LDOP:6DR-4.

LODPAj 03.13.
LDSPI *.D303W.
LDSPI 1.Da-1.
LOSPI 2,113-107".
LDSPI 3411-1.
LOSPI 4.01-36W.
LDSPI S.03-..
LWIP 6,D3*l1ff.
LODPAZ 03.4.

LDDPAj 03.13.
LOOP! *.Do.4**.
LOSPI 1,03.1.
LDSPI 2,03-1W.
LDSPI 3,03.1.
LDSP! 4,09-400.

LOOP! 6,02.19.
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Table F.2 (cont'd)

* DETECTOR LA6.
-' LDDPAz DB.13.

LOSPI 3.DB.DP)1r2;
HOU MDE',NDET
DME END
JIV SLD

END# LDDPA B. 13.
DS 1 0,DB.3OO0.

LOSPI1.3.
LOSPI 2,DB330SS.
LOOP! 3,D3-1.
LDSPI 4D~WO
LDVPAj 03.4.
JOR L#SQRT
LODPA: DB-13.
LDSPI *.DB-49.
LOSPI 1.031.1
LDSPI 2.03.496.
LDSP! 3,D2-1-
LDSPI 4,DR-1S2ff.
LODPA 03.4.
JSR VSORT

* SQUARE LAWI
SLI~s LDDPA; D3.13.

Q UANrTIZATION
LDSPI 6,03-DPX(3)
Nov 10.10
BNE LOOP2
JMqP LOOPM

LOOP2i LDDPA; 03.13.
LDSP! O.03-400.
LDSPI 1.03.12.
LDSP! 2,D3-i2.
LDDPaz D3B4.

* JSR WUANT
LDDPA; 03.13.
LDSPI *.DO300O.
LOSPI 1.D3.12.
LOSPI 2.DB.IOOO.
LODPAj 03.4.
JSR GIJANT
NOISE ONLY CFAR

LOOPI: t.ODPAs 03-13.
LOSPI 0.003.PYCO)
LDSPI 1.D3.IOOO.
LOSPI 2.Dl3..
LOSPI 6,03-493.
LDSPI 7.03.507.
LDSPI 1S.03.506.
LVSPI 13,03.DPX(-2)
LOUPA, 03.4.
JSH cAR
TARGET + N40ISE CFAR
LDDPAI 113.13.
LOOP! *03.2DPY(O)
LOSP! 1,02-16OW
LWP! 1.039.
LOOP! 3.0B3.
LOOP! 7,03.607.
LOOP! 163.oPXW.
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Table E-2 (cont'd)

LDDPA D4
Jsp CIAP
LDDPA: tt.13
LDSP:'3.DA
DEC NPCP'i0 P)v1,I i6F h

F114 LDDPA; DB-:3.

M
OU NPONHtImONLDpyVl)<SPFM

DEC tMlSo,DPY'I .<SPFN
BEQ FINI
JMqP LOOP

FINI: LDDPAD3.4.

KD RETURN

AEN

v r1-
KI
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SUBROUTINE CFAR

PURPOSE: To simulate two CFAR algorithms: Cell averaging

and greatest-of

FORTRAN CALLS: Call CFAR (NWD1, NT, OA, NN, TB, TA, TCI)

PARAMETERS: NWDI = Half of CFAR window width

NT = Total number of inputs

OA = AP output address

NN = Number of cells skipped

TB = AP address before cell of interest

TA = AP address after cell of interest

TCI = AP address for cell of interest

EXTERNALS: None

SCRATCH: SP (0-2, 6-7, 13-15)

'A

r-7r

. .
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I

Table E.3. Subroutine CFAR

$TITLE CFrA
* ftP PROCRAM TO SIMULATE TWO CFAR
* ALGORITHMS CELL AVERAGING AND
S* GREATEST-OF. THERE ARE SEVEN
* INPUTS:
* NdMD. - HALF OF CVAR WINDOu viDTH
* HT - TOTAL NO. OF INPUTS

OA - AtP OUTPUT ADDRESS
* 11 - NO. OF CELLS SKIPPED
* T - AtP ADDRESS BEFORE CELL OF INTEREST
* TA - AP ADDRESS AFTER CELL OF INTEREST
* TCI - AP ADDRESS FOR CELL OF INTEREST
SENTRW CFAR.7

"e SEGU 0
NT SEGU I
OAt SEW 2
10N EOU 13
T3 SEOU S
TA SEWU 7
TCI SEWU 15
NS SEU 14

cFARS NOU M 2NM.NS
DEC NS
UB NS,T3
LDTMAj DIB-'IIE

"OP

DPY(C )<RDTN fHOP

"OPPX (-)(fmD"Op

MOP
DP~Y(O )(RDSI ICMA4

NOP

NOP

• LOOP FOR IDZIG N PREUIOUS CELLS
LOOP4t FAlSS ZENO.ERO5 NOV T3,TIjISETRR

FDS
NOU 1IDN S

L.OOPI S INCIMOP xOD

FAD 3PX.FALCON

Nv3)(FA

LOOP FOR ADDING N FORUDI CELLS
FA42 FA ROSZ EIRsfOu TAS.TNSE11A

FAD

NOV wI,NS
LOOPt INCMj DPX(N

7*30 DX .VF#1 N

FAtDS jIG? LOP
LPDDING SURDNG NTORIIN N DPX()S

FAIDZRARIO AASEM

IrV8Y( i CFA (-4

Sp1(FA
FINGING LANKST SUN AND STORING IN DPX(-3)

I4 7
.12
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Table E.3 ('cont'd)

FSI DPX(-8),DPYCI)
Foul

1FGT LOOP3
*DPX-3)(DPVY1

LOOP3t ADD MI.TA
ADD Hh.T3

M UiLTIPLY SUMS DY F."NFrAUL DPX((SJDPY(S)FNUL DPX(-3).DPY(-3)
FrUL
FNULDPX(FM
FMULI DPX( -31(FMq
MO TC!.TC I;SETMA
HOP
DPY(2 1(1W

K ERORM CA THRESHOLD CONPAR
FSUI DPV(2),DPX(@)
FADD
HOP
3FGE CROSS
BR rim

CROSSI FADD DPX(Z).DPY(3)
FADb
DPY(3)(FA

* PERFORM GO THRESHOLD COMPARE
FINS FSUV DP(2),DPXC-3)

FADD
MOP
3FGE CROSI

CROWi FADD DPX(2).DPY(-4)
FADO
DPY-4 )FA

F11ADD MH.TCI

KOG FINO
* JMP LOOP4

* STORE NO. OF DETECTIONS
FINU' NOU OA,OA

MI(VPYC3)SSETMA
HOP
MI(DPV(-4)IINCNA
MOP
LOM 0D-4.
REM
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SUBROUTINE VRANDX

PURPOSE: To generate an array of random numbers uniformly

distributed between 0 and 1.

FORTRAN CALL: Call VRANDX (A,X,I,N)

PARAMETERS: A = Address of starting seed

X = Base address of output array

I = Increment between elements of output array

N = Number of output samples desired

FORMULA: Technique used is multiplicative congruential method.

X(O) = MOD(B*A,l-O) where B = 27.0

X(M) = MOD(B*X(M-1), 1.0) for M=l,2...,N-I

EXTERNALS: None

SCRATCH: SP (0-3, DPX (0-2), DPY (0)

NOTES: 1. Preferred starting seed is 0.2510637948.

2. At completion the seed is set for the last

number generated.

0,
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Table E.4. Subroutine VRANDX

3233s Ati DX - E'TrjP RANDOM NUMBERS /CC""N - RE 3.0, AUG 77 831333
* FOR EITHER MEMORY

$TITLE V*ANDX
GENTRY RlANDA.4

* -- -ABSTRAT---
:FILLS YECTOR C UITH A SEQUENCE OF FLOATING POINT RANDOM NUMBERS
'IIFORMLY DISTRIBUTED iETWEN 0.0 AND 1.9. SEQUENCE IS GENERATED
'USING A SEED A. FOLLO4ING GENERATION THE SEED IS SET TO THE LAST
*RIADON NUMBER GENERATED. THUS ALLOWING THE SEQJENCE TO IE CONTINUED
'IN THE NEXT CALL TO UlAMP. SUGGESTED SEED FOR FIRST CALL IS $.251)637948.

:TECIIIQUE USED IS MULTIPLICATIU CONGRUENTIAL METHOD.
OFORMULA: C($)'MD(BIAo.0) WHERE 3-27.0
SC(M)-'OD(BXC((I%-I)K),I.) FOR M-1 TO N-I

AMD A - CC(N-I)K)

* --- STATISTICS---
'LANGAGE a APAL
*EQUIPM0EHT AP-I2 1ITH EITHER MEMORY
OSIZES 1I LOCATIONS
*SPEED: INTROs S CYCLES
* LOOP: 7-U CYCLES (7.1 CYCLES AVERAGE)
* COLUMIMS/LOOPt I• FLOPS/LOOP : 3
S LS1.19" + .83 USEC, FOR 167 NSEC CLOCK

* MECAFLOPS: 2.Se
'SIRIUTIMES USED: NONE
M UTHORs R.S. MORIN

"MTE JAN 77

* --- USAGE---
:FORTRAI: CALL URANDX(A.C.K,N)
A• PLs JSR UR~NDX

*S-PW PARAMETERS
I E NUMBER

A SEu 0 *ADDRESS OF SEED
C Et I *BASE ADDRESS OF DESTINATION VJECTOR C
K SEw a *INCREMENT BETWEEN ELEMENTS OF C
N SEWU 3 *MUIER OF ELEMENTS IN C

TABLE MEMORY
ONE SEU !ONE

'SCRATHI SP(I.3), DPX(-) DPY(0), DPA UNCHANGED

1 ' OU A.A SETMA "GET SEED A
RP :I WED3 "GT MULTIPLIER I

PW FMASR DPX(2)(D• -GET FRACTION ASK

Am , 1T'4S4VE 1.0
SU K.C "BACK UP DESTINATION ADDRESS

LOOPs FPUL opUSH
FRUL PUSH
FUIU FRIDPX(I)s 'FORM 3A-I SINCE METHOD OF

OEXTRACTI"G FRACTION WILL K DIFFERENT
*IF 9$A(1.*

DPYCFI SAME S A FOR LATER
FADS OPUSH
rAm DPxC).DPV 'ASSUME 82A)1 sO

• 8'RACT ON CAI E EXTRACTED UITH RAW
aFwl ZERO,DpY 'GET FRACTION DIRECTLY IF IA(1

,1
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Table EA4 (cont'd)

DEC Nj 'DECREM~ENT COUNT
fFGT Ti 'SET FRACTION IMMNEDIATELY FROM9

:FA IF SIA)l
FAODD ROV N. 7041S 1S AN EXTRA CYCLE

'IN LOOP Ir ISA(1
OTIS 400D .C SErA fMI(A~ 'STORE RANDOM NUMB~ER

FAUJ DPX. PA; 'START FORMING NEXT NUMBIER
SW LOOP *CON4TINUE UNTIL

DONE, R!ON A,Aj SETNP3 %I(FA, 'ONE. T04EN STORE LAST RANDOMq
*NUM DER AS THE NEW, SEED.

RETURN 'THEN EXIT.
Bt PFP 27.6 'MULTIPLIER CONSTANT
FMASK SPP 0.ggggggggS 'FRACTION MASK

SlEhN
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SUBROUTINE RANDM

PURPOSE: Generates an array of random numbers which are

independent and have a Gaussian distribution.

FORTRAN CALL: Call RANDM (A, X, N, MEAN, STD, SCR)

PARAMETERS: A = Address of starting seed

X = Base address of output array

N = Number of samples desired

MEAN = Location of the desired mean value

STD = Location of the desired standard deviation

SCR = Base address of scratch storage (N words

of scratch storage are required)

FORMULA: Starting from two random numbers uI and u2 which are

uniformly distributed between 0 and 1, two Gaussian

numbers with desired mean and standard deviation are

obtained as

mI  n, a +

m2 =n 2 a +

where

, -2 In u, cos (2nu2 )

n2  V-2 ln u, sin (2ru 2)

EXTERNALS: VRANDX, LN, SQRT, COS, SIN

SCRATCH: SP (0-9), DPX (-3, -2, 0-2), DPY (-3, -2, 0)

NOTES: N words of scratch storage are required

A-- -- . .T - T . . . . . . .
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Table E.5. Subroutine RANDM

S!?TLE RAIDM
SENTD'v PANMf.6
SEX! UPA,4DX.L1.SQR.CCS.S~f,

SEE D SEOJ 0
X SEQu I
N SEQu 2

PEAN SEQU 3
STh SEU4

Z SEWU s
ftS SEQU 6
XS SEQU 7
N2 SEQU 10

V KEQU 11
X2 SEOU 4

RANDN: MYJ MEAH.REAtl. SElTqA
NOV N.NS
NOUV STDV.STD'; SETMA
INC Nj DPX-3)<MD
HOUR N.N2; LDTMA; 03*'NUOPI
Nov XY; DPY(-3)(MD
MVI X.XS; DPXC-2)<TM
ADD M2. V

JSR IaAHDX
MWV XS.XISETRA

DEC xi

LOOPIs DPXCMO JSR LN

INC XjSETRA
DEC H
INC6 XI; SE799A, RI (DPXj ONE LOOPI
muI NOIN
NFWV Y,XjSETrA

DEC xi
LOOP21 FHUL DPX(-B3.ND

RULs MO X1,X2
FRWLS ADD NL.X2
DY( -2 )(FA
DPXCFRI JSR COS
INC X1; WEMA: MI(JPX
DPX(3PY(-a,3 JSR SIN

DKC H
INC XRj NI(DPXS SEIM; ISl LOOP2

DEC V
MOI X.Xj SETMA
NCI. XSX

AD NO X1 $ETNA
LOMFML D.i

FMNMg INC XS SETNA
FMlL DPX.NI
INIC X2 UIN~j MI(MI FNUJL

A' INC fFMETAj NI(FM

ILI
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Table E.5 (cont'd)

DEC N; LD'MAj DR.'SS'
INC xt E~*lN .,P

FreUL; DEC XS
FMUL1 IMC X; SETflA
DPY(-3(<FM; F~dL FMflO

LOW4: FNUJL IDPV-3).MD
FADD FMDPX(-)z INC Xj SETMA
FADD; FNIJL+,DEC HS5
INC XS; SE+HA; MI(FAS RME LOOP4
RETtUtI

SEN
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SUBROUTINE WEIBUL

PURPOSE: To generate an array of clutter amplitudes (one for

each clutter cell of interest) where the spatial

statistics of clutter power are described by a Weibull

distribution and zero correlation.

FORTRAN CALL: Call WEIBUL (S,X,B,NC,A)

S = Address of seed for random number generation

X = Base address of output array

B = Base address of array [B(i)] containing the

median powers from each clutter cell

NC z Number of samples (clutter cells) desired

A = Address of Weibull parameter, a

FORMULA:

X(i) = (i) [(In i=O.1,...,(NC-l)

where [u(i)] is a set of random numbers which are

uniformly distributed between 0 and 1.

EXTERNALS: VRANDX, LN, EXP, VSQRT

*SCRATCH: SP (0-8, 13-15), DPX (-4-3), DPY (-4-3)

NOTES: The array [B(i)], which is prestored, must reflect

the variation of clutter power between different

clutter cells.

04
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Table E.6. Subroutine WEIBUL

$-ITLE uCIDUL
SENIPY VEIPUL-S
SEXI UftMOX.Lt4.EXP

SEED SEWU S
Com SEQU a

K UEJ 1
H SEGIJ 3
A SEQU 4

CopS SEQU S
KS SEQU 6
HS SEQU 7
KSS SEUJ 4

UEI3UJL'POV ##,A; SE'"A
NOu CON.CWms
N0 1N,tNS
IIOUK.KSb9WD -3)QWD

JSR %WMDx
IDEC CONS

pwq cs KSS 

i

IOU KS.Kj SETIRA
DEC KS

mw "DPKS." JSO LM
JSiN LM
FfJL vpx(),OP(31 NOV COCIS.CONsI SETIMA

FRUL
wPy(-Z)(NI

FMJLj INC K(; SE11"A
FNUAL; DECM

Ite KS; SETPAl jI(F~j IINE LWO

MOP

U9 ElT-

77e
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SUBROUTINE QUANT

PURPOSE: To truncate detector outputs

FORTRAN CALL: Call QUANT (X,Q,N)

PARAMETERS: X = Base address of input and output

Q = Base address of LJB level

N = Number of inputs

EXTERNALS: Div

SCRATCH: SP (0-4), DPX (-1, 0, 1, 3), DPT (-1, -2)

!r

nI

II

o1

oo

"4
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Table E.7. Subroutine QUANT

STITLE OUAW~

.CXT DIU
x KaGu 0
a Kau I
N WOU a
Y KaOu 3
T $Eau 4

G&AtMCNV X. YSEOM

NOV a .bSE TRA

FABS DPX(-1)j OPV(TR
FADD3 DP(1)(PD; DPX(S)<MD
D(- I J(FA
JSR DIV
FNIJL DPX(0).DPYC-1)
LDPTAj D8.'NALF
FWJLj DPYCS3(DPX-1)
VNUL 1. DPX(1)(TN
LDSPI Tt DB-e?., DPX(Z)FW

LOOP:FZX? DPX(Z)
AnD

DPX(3)(FAg INC X; SEPA
FADD 2EfR.MDPX(3 ); NOV 7,?
FADD
FA6D DPXCIJ.PA; DPYCO)(NMD

FML; DDPX(-I<.ZEAO

DPV(2j<FMI iro? POS
FSUOR PM'C8),ZMR
PIDD

PQSIFOOJL, DEC N1
INC YSETHAs NI(OPY(Z)j INC LOOP; DPX(2)(FN

1 1-4

jjjjjjjrP-, 17
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